Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions

Article, Preprint English OPEN
Fourier, G.; Littelmann, P.;
  • Publisher: Elsevier BV
  • Journal: Advances in Mathematics, volume 211, issue 2, pages 566-593 (issn: 0001-8708)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1016/j.aim.2006.09.002
  • Subject: QA | Mathematics(all) | 22E46, 14M15 | Mathematics - Representation Theory | Mathematics - Quantum Algebra
    arxiv: Mathematics::Representation Theory | Mathematics::Quantum Algebra

We study finite dimensional representations of current algebras, loop algebras and their quantized versions. For the current algebra of a simple Lie algebra of type {\tt ADE}, we show that Kirillov-Reshetikhin modules and Weyl modules are in fact all Demazure modules. A... View more
  • References (39)
    39 references, page 1 of 4

    [1] E. Ardonne, R. Kedem, Fusion products of Kirillov-Reshetikhin modules, math.RT/0602177.

    [2] J. Beck, H. Nakajima, Crystal bases and two-sided cells of quantum affine algebras, Duke Math. J. 123 (2) (2004) 335-402, preprint QA/0212253.

    [3] N. Bourbaki, Groupes et algèbres de Lie, Chapitres IV-VI, Hermann, Paris, 1968.

    [4] V. Chari, Integrable representations of affine Lie algebras, Invent. Math. 85 (1986) 317-335.

    [5] V. Chari, On the fermionic formula and the Kirillov-Reshetikhin conjecture, Int. Math. Res. Not. 12 (2001) 629- 654, math.QA/0006090.

    [6] V. Chari, S. Loktev, Weyl, Demazure and fusion modules for the current algebra for slr+1, math.QA/0502165.

    [7] V. Chari, A. Moura, Spectral characters of finite-dimensional representations of affine algebras, J. Algebra 279 (2) (2004) 820-839.

    [8] V. Chari, A. Moura, The restricted Kirillov-Reshetikhin modules for the current and the twisted current algebras, math.RT/0507584.

    [9] V. Chari, A. Moura, Characters and blocks for finite-dimensional representations of quantum affine algebras, Int. Math. Res. Not. 5 (2005) 257-298, math.RT/0406151.

    [10] V. Chari, A. Pressley, Weyl modules for classical and quantum affine algebras, Represent. Theory 5 (2001) 191-223.

  • Metrics
Share - Bookmark