publication . Article . 2014

Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity

C. Ozsoy-Keskinbora; C. B. Boothroyd; R. E. Dunin-Borkowski; P. A. van Aken; C. T. Koch;
Open Access English
  • Published: 12 Nov 2014 Journal: Scientific Reports, volume 4 (eissn: 2045-2322, Copyright policy)
  • Publisher: Nature Publishing Group
  • Country: Germany
Abstract
Holography - originally developed for correcting spherical aberration in transmission electron microscopes - is now used in a wide range of disciplines that involve the propagation of waves, including light optics, electron microscopy, acoustics and seismology. In electron microscopy, the two primary modes of holography are Gabor's original in-line setup and an off-axis approach that was developed subsequently. These two techniques are highly complementary, offering superior phase sensitivity at high and low spatial resolution, respectively. All previous investigations have focused on improving each method individually. Here, we show how the two approaches can b...
Subjects
free text keywords: Article, ddc:000, Multidisciplinary, Holography, law.invention, law, Electron holography, Computer science, Optics, business.industry, business, Electron microscope, Bioinformatics, Spatial frequency, Terahertz radiation, Spherical aberration, Image resolution, Low noise
Funded by
EC| ESTEEM 2
Project
ESTEEM 2
Enabling Science and Technology through European Electron Microscopy
  • Funder: European Commission (EC)
  • Project Code: 312483
  • Funding stream: FP7 | SP4 | INFRA
42 references, page 1 of 3

Gabor D.A New Microscopic Principle. Nature 161, 777–778 (1948).18860291 [OpenAIRE] [PubMed]

Lundqvist S.[Holography]. Nobel Lectures in Physics 1971–1980, World Scientific, Singapore, 1992.

Orchowski A., Rau W. D. & Lichte H. Electron Holography Surmounts Resolution Limit of Electron Microscopy. Phys. Rev. Lett. 74, 399–402 (1995).10058748 [OpenAIRE] [PubMed]

Rau W. D., Schwander P., Baumann F. H., Höppner W. & Ourmazd A. Two-Dimensional Mapping of the Electrostatic Potential in Transistors by Electron Holography. Phys. Rev. Lett. 82, 2614–2617 (1999). [OpenAIRE]

Loudon J. C., Mathur N. D. & Midgley P. A. Charge-ordered ferromagnetic phase in La0.5Ca0.5MnO3. Nature 420, 797–800 (2002).12490944 [PubMed]

He K., Ma F.-X., Xu C.-Y. & Cumings J. Mapping magnetic fields of Fe3O4 nanosphere assemblies by electron holography. J. Appl. Phys. 113, 17B528 (2013).

Hÿtch M., Houdellier F., Hüe F. & Snoeck E. Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453, 1086–1089 (2008).18563161 [OpenAIRE] [PubMed]

Koch C. T., Özdöl V. B. & Aken P. A. van. An efficient, simple, and precise way to map strain with nanometer resolution in semiconductor devices. Appl. Phys. Lett. 96, 091901 (2010). [OpenAIRE]

Twitchett-Harrison A. C., Yates T. J. V., Newcomb S. B., Dunin-Bork owski R. E. & Midgley P. A. High-Resolution Three-Dimensional Mapping of Semiconductor Dopant Potentials. Nano Lett. 7, 2020–2023 (2007). [OpenAIRE]

Simon P.et al.Electron holography of biological samples. Micron 39, 229–256 (2008).17374487 [PubMed]

Cowley J. M.Twenty forms of electron holography. Ultramicroscopy 41, 335–348 (1992).

Möllenstedt G. & Düker H. Fresnelscher Interferenzversuch mit einem Biprisma für Elektronenwellen. Naturwissenschaften 42, 41–41 (1955). [OpenAIRE]

Lehmann M. & Lichte H. Tutorial on Off-Axis Electron Holography. Microsc. Microanal. 8, 447–466 (2002).12533207 [OpenAIRE] [PubMed]

Möllenstedt G. & Wahl H. Elektronenholographie und Rekonstruktion mit Laserlicht. Naturwissenschaften 55, 340–341 (1968).

Haine M. E. & Dyson J. A Modification to Gabor's Proposed Diffraction Microscope. Nature 166, 315–316 (1950).15439313 [PubMed]

42 references, page 1 of 3
Abstract
Holography - originally developed for correcting spherical aberration in transmission electron microscopes - is now used in a wide range of disciplines that involve the propagation of waves, including light optics, electron microscopy, acoustics and seismology. In electron microscopy, the two primary modes of holography are Gabor's original in-line setup and an off-axis approach that was developed subsequently. These two techniques are highly complementary, offering superior phase sensitivity at high and low spatial resolution, respectively. All previous investigations have focused on improving each method individually. Here, we show how the two approaches can b...
Subjects
free text keywords: Article, ddc:000, Multidisciplinary, Holography, law.invention, law, Electron holography, Computer science, Optics, business.industry, business, Electron microscope, Bioinformatics, Spatial frequency, Terahertz radiation, Spherical aberration, Image resolution, Low noise
Funded by
EC| ESTEEM 2
Project
ESTEEM 2
Enabling Science and Technology through European Electron Microscopy
  • Funder: European Commission (EC)
  • Project Code: 312483
  • Funding stream: FP7 | SP4 | INFRA
42 references, page 1 of 3

Gabor D.A New Microscopic Principle. Nature 161, 777–778 (1948).18860291 [OpenAIRE] [PubMed]

Lundqvist S.[Holography]. Nobel Lectures in Physics 1971–1980, World Scientific, Singapore, 1992.

Orchowski A., Rau W. D. & Lichte H. Electron Holography Surmounts Resolution Limit of Electron Microscopy. Phys. Rev. Lett. 74, 399–402 (1995).10058748 [OpenAIRE] [PubMed]

Rau W. D., Schwander P., Baumann F. H., Höppner W. & Ourmazd A. Two-Dimensional Mapping of the Electrostatic Potential in Transistors by Electron Holography. Phys. Rev. Lett. 82, 2614–2617 (1999). [OpenAIRE]

Loudon J. C., Mathur N. D. & Midgley P. A. Charge-ordered ferromagnetic phase in La0.5Ca0.5MnO3. Nature 420, 797–800 (2002).12490944 [PubMed]

He K., Ma F.-X., Xu C.-Y. & Cumings J. Mapping magnetic fields of Fe3O4 nanosphere assemblies by electron holography. J. Appl. Phys. 113, 17B528 (2013).

Hÿtch M., Houdellier F., Hüe F. & Snoeck E. Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453, 1086–1089 (2008).18563161 [OpenAIRE] [PubMed]

Koch C. T., Özdöl V. B. & Aken P. A. van. An efficient, simple, and precise way to map strain with nanometer resolution in semiconductor devices. Appl. Phys. Lett. 96, 091901 (2010). [OpenAIRE]

Twitchett-Harrison A. C., Yates T. J. V., Newcomb S. B., Dunin-Bork owski R. E. & Midgley P. A. High-Resolution Three-Dimensional Mapping of Semiconductor Dopant Potentials. Nano Lett. 7, 2020–2023 (2007). [OpenAIRE]

Simon P.et al.Electron holography of biological samples. Micron 39, 229–256 (2008).17374487 [PubMed]

Cowley J. M.Twenty forms of electron holography. Ultramicroscopy 41, 335–348 (1992).

Möllenstedt G. & Düker H. Fresnelscher Interferenzversuch mit einem Biprisma für Elektronenwellen. Naturwissenschaften 42, 41–41 (1955). [OpenAIRE]

Lehmann M. & Lichte H. Tutorial on Off-Axis Electron Holography. Microsc. Microanal. 8, 447–466 (2002).12533207 [OpenAIRE] [PubMed]

Möllenstedt G. & Wahl H. Elektronenholographie und Rekonstruktion mit Laserlicht. Naturwissenschaften 55, 340–341 (1968).

Haine M. E. & Dyson J. A Modification to Gabor's Proposed Diffraction Microscope. Nature 166, 315–316 (1950).15439313 [PubMed]

42 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2014

Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity

C. Ozsoy-Keskinbora; C. B. Boothroyd; R. E. Dunin-Borkowski; P. A. van Aken; C. T. Koch;