publication . Article . Review . Other literature type . Report . 2019

Future Circular Collider Conceptual Design Report Volume 1

Abada, A.; Abbrescia, M.; AbdusSalam, S.S.; Abdyukhanov, I.; Fernandez, J.A.; Abramov, A.; Aburaia, M.; Acar, A.O.; Adzic, P.R.; Agrawal, P.; ...
Open Access English
  • Published: 05 Jun 2019
Abstract
We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics.
Subjects
free text keywords: /dk/atira/pure/subjectarea/asjc/2200/2201, Engineering (miscellaneous), /dk/atira/pure/subjectarea/asjc/3100/3101, Physics and Astronomy (miscellaneous), 530, activity report, accelerator: design, particle physics, FCC, new physics, electroweak interaction, strong interaction, sensitivity, coherence, heavy ion, flavor, Hadron theoretical physics, * Automatic Keywords *, ep theoretical physics, Lepton theoretical physics, Conceptual design report (CDR), [PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph], [PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph], [PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex], [PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det], Review, :Física [Àrees temàtiques de la UPC], Física, CERN, FCC, PHYSICS, HIGH ENERGY PHYSICS,, Technology, Colliders (Nuclear physics), Particle accelerators, Astrophysics, QB460-466, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798, Higgs bosons ,  standard model (particle physics) , boson pair, Electroweak Phase-Transition, By-Light scattering, Deep inelastic-scattering, Strange Baryon production, Dark-Matter, Radiative-Corrections, E(+)E(-) Collisions, Transverse-Momentum, Top-Quark, Branching fractions, design [accelerator], partikkelfysikk, Future Circular Collider (FCC), partikkelakselerator, :Mathematics and natural science: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP], Accelerators and Storage Rings, hiukkasfysiikka, Accelerator Physics and Instrumentation, Acceleratorfysik och instrumentering, Subatomic Physics, Subatomär fysik, Futire colliders, FCC, CERN, Settore FIS/01 - Fisica Sperimentale, Physics beyond the Standard Model, Flavour, Physics, Future Circular Collider, Higgs boson, Complementarity (molecular biology), Collider, law.invention, law, Top quark, ddc:600, ddc:530, ddc:500.2
Funded by
EC| MathAm
Project
MathAm
Mathematical Structures in Scattering Amplitudes
  • Funder: European Commission (EC)
  • Project Code: 637019
  • Funding stream: H2020 | ERC | ERC-STG
,
EC| EASITrain
Project
EASITrain
European Advanced Superconductivity Innovation and Training
  • Funder: European Commission (EC)
  • Project Code: 764879
  • Funding stream: H2020 | MSCA-ITN-ETN
,
EC| HiPPiE_at_LHC
Project
HiPPiE_at_LHC
High Precision PDFs for the precision Era at the Large Hadron Collider
  • Funder: European Commission (EC)
  • Project Code: 746159
  • Funding stream: H2020 | MSCA-IF-EF-ST
,
EC| RI Impact Pathways
Project
RI Impact Pathways
Charting Impact Pathways of Investment in Research Infrastructures
  • Funder: European Commission (EC)
  • Project Code: 777563
  • Funding stream: H2020 | CSA
,
EC| EuroCirCol
Project
EuroCirCol
European Circular Energy-Frontier Collider Study
  • Funder: European Commission (EC)
  • Project Code: 654305
  • Funding stream: H2020 | RIA
57 references, page 1 of 4

1. CERN Council, European Strategy Session of Council, 30 May 2013, CERN-Council-S/106 (2013)

2. Future Circular Collider Study Kickoff Meeting, University of Geneva, 12-15 February 2014 (2014). http://indico.cern.ch/e/fcc-kickoff

3. E. Todesco, F. Zimmermann (eds.), in Proc. EuCARD-AccNet-EuroLumi Workshop: The High-Energy Large Hadron Collider-HE-LHC10, Malta, 14-16 October 2010, CERN-2011-003 (2010). arXiv:1111.7188 [physics.acc-ph]

4. J.A. Osborne, C.S. Waaijer, Pre-Feasability Assessment for an 80 km Tunnel Project at CERN, Contribution to the Update of the European Strategy for Particle Physics, No. 165, 27 July 2012. http://indico.cern.ch/event/175067/call-for-abstracts/165/file/1.pdf

5. Joint Snowmass-EuCARD/AccNet-HiLumi meeting 'Frontier Capabilities for Hadron Colliders 2013' a.k.a. EuCARD VHE-LHC Day, CERN, 21-22 February 2013 (2013). http://indico.cern.ch/event/223094

6. A. Blondel, F. Zimmermann, A High Luminosity e+e− Collider in the LHC Tunnel to Study the Higgs Boson (2011). arXiv:1112.2518 [OpenAIRE]

7. EuCARD LEP3 workshop, 18 June 2012; 2nd EuCARD LEP3 workshop 23 October 2012; 3rd EuCARD TLEP3 workshop, 10 January 2013; 4th EuCARD TLEP workshop, 4-5 April 2013 (2012 and 2013)

8. The TLEP Design Study Working Group, First Look at the Physics Case of TLEP. JHEP 01, 164 (2014). https://doi.org/10.1007/ JHEP01(2014)164, arXiv:1308.6176 [hep-ex]

9. V.L. Ginzburg, L.D. Landau, On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064-1082 (1950)

10. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108, 1175-1204 (1957). https://doi.org/10.1103/PhysRev. 108.1175 [OpenAIRE]

11. Planck Collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016). https:// doi.org/10.1051/0004-6361/201525830, arXiv:1502.01589 [astro-ph.CO]

12. W. Hu, R. Barkana, A. Gruzinov, Cold and fuzzy dark matter. Phys. Rev. Lett. 85, 1158-1161 (2000). https://doi.org/10.1103/PhysRevLett. 85.1158. arXiv:astro-ph/0003365 [astro-ph] [OpenAIRE]

13. K. Griest, A.M. Cieplak, M.J. Lehner, Experimental limits on primordial black hole dark matter from the first 2 yr of Kepler data. Astrophys. J. 786(2), 158 (2014). https://doi.org/10.1088/0004-637X/786/2/158. arXiv:1307.5798 [astro-ph.CO] [OpenAIRE]

14. MACHO, EROS Collaboration, C. Alcock et al., EROS and MACHO combined limits on planetary mass dark matter in the galactic halo. Astrophys. J. 499, L9 (1998). arXiv:astro-ph/9803082 [astro-ph]. Preprint UNSW-AST-AFS1-98, https://doi.org/10.1086/311355

15. J. Yoo, J. Chaname, A. Gould, The end of the MACHO era: limits on halo dark matter from stellar halo wide binaries. Astrophys. J. 601, 311-318 (2004). https://doi.org/10.1086/380562. arXiv:astro-ph/0307437 [astro-ph] [OpenAIRE]

57 references, page 1 of 4
Abstract
We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics.
Subjects
free text keywords: /dk/atira/pure/subjectarea/asjc/2200/2201, Engineering (miscellaneous), /dk/atira/pure/subjectarea/asjc/3100/3101, Physics and Astronomy (miscellaneous), 530, activity report, accelerator: design, particle physics, FCC, new physics, electroweak interaction, strong interaction, sensitivity, coherence, heavy ion, flavor, Hadron theoretical physics, * Automatic Keywords *, ep theoretical physics, Lepton theoretical physics, Conceptual design report (CDR), [PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph], [PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph], [PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex], [PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det], Review, :Física [Àrees temàtiques de la UPC], Física, CERN, FCC, PHYSICS, HIGH ENERGY PHYSICS,, Technology, Colliders (Nuclear physics), Particle accelerators, Astrophysics, QB460-466, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798, Higgs bosons ,  standard model (particle physics) , boson pair, Electroweak Phase-Transition, By-Light scattering, Deep inelastic-scattering, Strange Baryon production, Dark-Matter, Radiative-Corrections, E(+)E(-) Collisions, Transverse-Momentum, Top-Quark, Branching fractions, design [accelerator], partikkelfysikk, Future Circular Collider (FCC), partikkelakselerator, :Mathematics and natural science: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP], Accelerators and Storage Rings, hiukkasfysiikka, Accelerator Physics and Instrumentation, Acceleratorfysik och instrumentering, Subatomic Physics, Subatomär fysik, Futire colliders, FCC, CERN, Settore FIS/01 - Fisica Sperimentale, Physics beyond the Standard Model, Flavour, Physics, Future Circular Collider, Higgs boson, Complementarity (molecular biology), Collider, law.invention, law, Top quark, ddc:600, ddc:530, ddc:500.2
Funded by
EC| MathAm
Project
MathAm
Mathematical Structures in Scattering Amplitudes
  • Funder: European Commission (EC)
  • Project Code: 637019
  • Funding stream: H2020 | ERC | ERC-STG
,
EC| EASITrain
Project
EASITrain
European Advanced Superconductivity Innovation and Training
  • Funder: European Commission (EC)
  • Project Code: 764879
  • Funding stream: H2020 | MSCA-ITN-ETN
,
EC| HiPPiE_at_LHC
Project
HiPPiE_at_LHC
High Precision PDFs for the precision Era at the Large Hadron Collider
  • Funder: European Commission (EC)
  • Project Code: 746159
  • Funding stream: H2020 | MSCA-IF-EF-ST
,
EC| RI Impact Pathways
Project
RI Impact Pathways
Charting Impact Pathways of Investment in Research Infrastructures
  • Funder: European Commission (EC)
  • Project Code: 777563
  • Funding stream: H2020 | CSA
,
EC| EuroCirCol
Project
EuroCirCol
European Circular Energy-Frontier Collider Study
  • Funder: European Commission (EC)
  • Project Code: 654305
  • Funding stream: H2020 | RIA
57 references, page 1 of 4

1. CERN Council, European Strategy Session of Council, 30 May 2013, CERN-Council-S/106 (2013)

2. Future Circular Collider Study Kickoff Meeting, University of Geneva, 12-15 February 2014 (2014). http://indico.cern.ch/e/fcc-kickoff

3. E. Todesco, F. Zimmermann (eds.), in Proc. EuCARD-AccNet-EuroLumi Workshop: The High-Energy Large Hadron Collider-HE-LHC10, Malta, 14-16 October 2010, CERN-2011-003 (2010). arXiv:1111.7188 [physics.acc-ph]

4. J.A. Osborne, C.S. Waaijer, Pre-Feasability Assessment for an 80 km Tunnel Project at CERN, Contribution to the Update of the European Strategy for Particle Physics, No. 165, 27 July 2012. http://indico.cern.ch/event/175067/call-for-abstracts/165/file/1.pdf

5. Joint Snowmass-EuCARD/AccNet-HiLumi meeting 'Frontier Capabilities for Hadron Colliders 2013' a.k.a. EuCARD VHE-LHC Day, CERN, 21-22 February 2013 (2013). http://indico.cern.ch/event/223094

6. A. Blondel, F. Zimmermann, A High Luminosity e+e− Collider in the LHC Tunnel to Study the Higgs Boson (2011). arXiv:1112.2518 [OpenAIRE]

7. EuCARD LEP3 workshop, 18 June 2012; 2nd EuCARD LEP3 workshop 23 October 2012; 3rd EuCARD TLEP3 workshop, 10 January 2013; 4th EuCARD TLEP workshop, 4-5 April 2013 (2012 and 2013)

8. The TLEP Design Study Working Group, First Look at the Physics Case of TLEP. JHEP 01, 164 (2014). https://doi.org/10.1007/ JHEP01(2014)164, arXiv:1308.6176 [hep-ex]

9. V.L. Ginzburg, L.D. Landau, On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064-1082 (1950)

10. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108, 1175-1204 (1957). https://doi.org/10.1103/PhysRev. 108.1175 [OpenAIRE]

11. Planck Collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016). https:// doi.org/10.1051/0004-6361/201525830, arXiv:1502.01589 [astro-ph.CO]

12. W. Hu, R. Barkana, A. Gruzinov, Cold and fuzzy dark matter. Phys. Rev. Lett. 85, 1158-1161 (2000). https://doi.org/10.1103/PhysRevLett. 85.1158. arXiv:astro-ph/0003365 [astro-ph] [OpenAIRE]

13. K. Griest, A.M. Cieplak, M.J. Lehner, Experimental limits on primordial black hole dark matter from the first 2 yr of Kepler data. Astrophys. J. 786(2), 158 (2014). https://doi.org/10.1088/0004-637X/786/2/158. arXiv:1307.5798 [astro-ph.CO] [OpenAIRE]

14. MACHO, EROS Collaboration, C. Alcock et al., EROS and MACHO combined limits on planetary mass dark matter in the galactic halo. Astrophys. J. 499, L9 (1998). arXiv:astro-ph/9803082 [astro-ph]. Preprint UNSW-AST-AFS1-98, https://doi.org/10.1086/311355

15. J. Yoo, J. Chaname, A. Gould, The end of the MACHO era: limits on halo dark matter from stellar halo wide binaries. Astrophys. J. 601, 311-318 (2004). https://doi.org/10.1086/380562. arXiv:astro-ph/0307437 [astro-ph] [OpenAIRE]

57 references, page 1 of 4
Any information missing or wrong?Report an Issue