Influence des transformations minéralogiques sur la mobilité de l'arsenic dans les milieux anoxiques - Application au cas des eaux souterraines du delta du Bengale

Doctoral thesis French OPEN
Burnol, André;
(2009)
  • Publisher: HAL CCSD
  • Subject: Reactive transfer | [SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry | Bacteria | Bioenergetics | Bengale | Bioénergétique | Bactéries | Groundwater | Bengal | Eaux souterraines | Arsenic | Transfert réactif

Natural wide-scale poisoning is today affecting the populations that rely on drinking water from aquifers of the Bengal delta. The aim of this thesis is therefore to obtain a better understanding of arsenic mobility within these aquifers by describing, based on the stud... View more
  • References (70)
    70 references, page 1 of 7

    Table 1: General chemical and physical properties of As element .......................................... 23 Table 2: List of principal arsenic-rich minerals (from Matera, 2001) ..................................... 24 Table 3: 2LFh-As characterization, initial state and after 6 months ....................................... 45 Table 4: Review of existing coupled reactive transport and microbial processes codes ......... 49 Table 5: Modified growth medium MS2*................................................................................ 96 Table 6: Experiments with 2LFh, 2LFh-As(III) and 2LFh-As(V)........................................... 97 Table 7: Presence of thioarsenite, IRB and dsrAB gene in the column (days 43,44, 48) ...... 110 Table 8: Growth medium for iron-reducing bacteria ............................................................. 117 Table 9: Primers used to amplify by PCR dsrAB functional gene ......................................... 118 Albernathy C.O., Marcus W. and Chen C. (1989) Report on arsenic (As) work group meetings. Memo from CO Albernathy. Peter Cook and Peter Preuss, US EPA.

    Armstrong C.W., Stroube R.B., Rubio T. Siudyla E.A., Miller G.B. Jr. (1984) Outbreak of fatal arsenic poisoning caused by contaminated drinking water. Arch. Environ. Health, 39, 4, 276-279.

    Basberg, L., Engesgaard, P., 1999. A sequential partial equilibrium approach to multicomponent reactive transport modeling of redox processes in groundwater impacted by landfill leachate, Chapter 5 in Field and numerical investigations of landfill leachate in the Gardermoen glaciofluvial aquifer, Norway, PhD thesis by Leif Basberg, Faculty of Applied Earth Sciences, Department of Geology and Mineral Resources Engineering, The Norwegian University of Science and Technology, pp. 64-106.

    BGS and DPHE, Arsenic contamination of groundwater in Bangladesh. Keyworth. Edited by: Kinniburgh DG, Smedley PL. 2001.

    Bethke CM, The Geochemist's Workbench®. A user's guide to Rxn, Act2, Tact, React, and Gplot. Release 4.0. Urbana, University of Illinois, 2002.

    Bates M.N., Smith A.H., Cantor K.P. (1995) Cas-control study of bladder cancer and arsenic in drinking water. American Journal Epidemiology 141, 523-530.

    Chen C.J. et Wang C.J. (1990) Ecological correlation between arsenic level in well water and age-adjusted mortality from malignant neoplasms. Cancer Res., 50, p. 5470- 5474.

    Chilakapati A., Yabusaki S., Szecsody J. and MacEvoy W. (2000) Groundwater flow, multicomponent transport and biogeochemistry: development and application of a coupled process model. J. Contam. Hydrol. 43, 303-325.

    Combes J.M., Manceau A., Calas G., Bottero J.Y. (1989) Formation of ferric oxides from aqueous solutions : a polyedral approach by X-Ray absorption spectroscopy : I. Hydrolysis and formation of ferric gels. Geochim. Cosmo. Acta, 53, 583-594.

    Cummings D.E., Caccavo F.J., Spring S. and Rosenzweig R.F. (1999). Ferribacterium limneticum, gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining impacted freshwater lake sediments. Arch. Microbiol. 171, 183-188.

  • Similar Research Results (2)
  • Metrics
Share - Bookmark