numericalsgps, a GAP package for numerical semigroups

Preprint, Article English OPEN
delgado, m; García Sánchez, PA;
  • Related identifiers: doi: 10.1145/2930964.2930966
  • Subject: Computing systems, Mathematics | :Matemática [Ciências exactas e naturais] | Mathematics - Commutative Algebra | 20M14, 20M13, 20--04 | :Mathematics [Natural sciences] | Sistemas computacionais, Matemática
    arxiv: Mathematics::Operator Algebras | Computer Science::Mathematical Software

The package numericalsgps performs computations with and for numerical semigroups. Recently also affine semigroups are admitted as objects for calculations. This manuscript is a survey of what the package does, and at the same time of the trending topics on numerical se... View more
  • References (45)
    45 references, page 1 of 5

    [1] 4ti2 team, 4ti2-a software package for algebraic, geometric and combinatorial problems on linear spaces, available at

    [2] F. Aguilo´-Gost, P. A. Garc´ıa-Sa´nchez, Factoring in embedding dimension three numerical semigroups, Electron. J. Comb. 17 (2010), #R138.

    [3] A. Assi, P. A. Garc´ıa-Sa´nchez, Constructing the set of complete intersection numerical semigroups with a given Frobenius number, Applicable Algebra in Engineering, Communication and Computing 24, (2013), 133-148.

    [4] A. Assi and P. A. Garc´ıa-Sa´nchez, On curves with one place at infinity, arXiv:1407.0490, 2014.

    [5] A. Assi, P. A. Garc´ıa-Sa´nchez, and V. Micale. Bases of subalgebras of k~x and k[x], arXiv, 1412.4089, 2014.

    [6] M. Barakat, S. Gutsche, S. Jambor, M. Lange-Hegermann, A. Lorenz, and O. Motsak. GradedModules, a homalg based package for the abelian category of finitely presented graded modules over computable graded rings, Version 2014.09.17.˜barakat/homalg-project/GradedModules, Sep 2014. GAP package.

    [7] V. Barucci, D. D. Dobbs, M. Fontana, Maximality properties in numerical semigroups and applications to onedimensional analytically irreducible local domains, Memoirs of the American Mathematical Society 598, 1997.

    [8] V. Barucci, R. Fro¨berg, Associated graded rings of one-dimensional analytically irreducible rings, J. Algebra 304 (2006), 349-358.

    [9] T. Barron, C. O'Neill, R. Pelayo, On the computation of delta sets and ω-primality in numerical monoids, preprint, 2014.

    [10] V. Blanco, P. A. Garc´ıa-Sa´nchez, A. Geroldinger, Semigroup-theoretical characterizations of arithmetical invariants with applications to numerical monoids and Krull monoids, Illinois J. Math. 55 (2011), 1385-1414.

  • Related Research Results (4)
  • Metrics
Share - Bookmark