publication . Preprint . Article . 2013

Full length article: Generating functions of orthogonal polynomials in higher dimensions

De Bie, Hendrik; Peña Peña, Dixan; Sommen, Franciscus;
Open Access English
  • Published: 11 Apr 2013
  • Country: Belgium
Abstract
In this paper two important classes of orthogonal polynomials in higher dimensions using the framework of Clifford analysis are considered, namely the Clifford-Hermite and the Clifford-Gegenbauer polynomials. For both classes an explicit generating function is obtained.
Subjects
arXiv: Computer Science::Emerging TechnologiesMathematics::Classical Analysis and ODEs
free text keywords: Mathematics and Statistics, Cauchy-Kowalevski extension theorem, THEOREM, CLIFFORD ANALYSIS, Fueter's theorem, Clifford-Hermite polynomials, Clifford-Gegenbauer polynomials, Mathematics - Complex Variables, 30G35, 33C45, 33C50, Applied Mathematics, Analysis, General Mathematics, Numerical Analysis, Discrete orthogonal polynomials, Jacobi polynomials, symbols.namesake, symbols, Orthogonal polynomials, Algebra, Hahn polynomials, Mathematical analysis, Gegenbauer polynomials, Difference polynomials, Mathematics, Classical orthogonal polynomials, Wilson polynomials
Related Organizations
23 references, page 1 of 2

[1] G. Andrews, R. Askey and R. Roy, Special functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999.

[2] F. Brackx, R. Delanghe and F. Sommen, Clifford analysis. Research Notes in Mathematics, 76, Pitman (Advanced Publishing Program), Boston, MA, 1982.

[3] F. Brackx, N. De Schepper and F. Sommen, The Clifford-Gegenbauer polynomials and the associated continuous wavelet transform. Integral Transforms Spec. Funct. 15 (2004), no. 5, 387-404.

[4] W. K. Clifford, Applications of Grassmann's Extensive Algebra. Amer. J. Math. 1 (1878), no. 4, 350-358.

[5] F. Colombo, I. Sabadini and F. Sommen, The inverse Fueter mapping theorem. Commun. Pure Appl. Anal. 10 (2011), no. 4, 1165-1181.

[6] F. Colombo, I. Sabadini and F. Sommen, The inverse Fueter mapping theorem in integral form using spherical monogenics. Israel Journal of Mathematics 2012, DOI: 10.1007/s11856-012-0090-4.

[7] H. De Bie, Clifford algebras, Fourier transforms and quantum mechanics. Math. Methods Appl. Sci. 35 (2012), 2198-2228.

[8] H. De Bie and F. Sommen, Hermite and Gegenbauer polynomials in superspace using Clifford analysis. J. Phys. A 40 (2007), no. 34, 10441- 10456. [OpenAIRE]

[9] R. Delanghe, F. Sommen and V. Souˇcek, Clifford algebra and spinorvalued functions. Mathematics and its Applications, 53, Kluwer Academic Publishers Group, Dordrecht, 1992.

[10] R. Fueter, Die funktionentheorie der differentialgleichungen Δu = 0 und ΔΔu = 0 mit vier variablen. Comm. Math. Helv. 7 (1935), 307-330.

[11] K. Gu¨rlebeck and W. Spro¨ssig, Quaternionic and Clifford calculus for physicists and engineers. Wiley and Sons Publications, Chichester, 1997.

[12] K. I. Kou, T. Qian and F. Sommen, Generalizations of Fueter's theorem. Methods Appl. Anal. 9 (2002), no. 2, 273-289.

[13] H. L. Krall and O. Frink, A new class of orthogonal polynomials: The Bessel polynomials. Trans. Amer. Math. Soc. 65, (1949), 100-115. [OpenAIRE]

[14] D. Pen˜a Pen˜a, Cauchy-Kowalevski extensions, Fueter's theorems and boundary values of special systems in Clifford analysis, Ph.D. Thesis, Ghent University, Ghent, 2008.

[15] D. Pen˜a Pen˜a and F. Sommen, Monogenic Gaussian distribution in closed form and the Gaussian fundamental solution. Complex Var. Elliptic Equ. 54 (2009), no. 5, 429-440. [OpenAIRE]

23 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Preprint . Article . 2013

Full length article: Generating functions of orthogonal polynomials in higher dimensions

De Bie, Hendrik; Peña Peña, Dixan; Sommen, Franciscus;