publication . Other literature type . Preprint . Article . 2019

Plasma-photonic spatiotemporal synchronization of relativistic electron and laser beams

Scherkl, Paul; Knetsch, Alexander; Heinemann, Thomas; Sutherland, Andrew; Habib, Ahmad Fahim; Karger, Oliver; Ullmann, Daniel; Beaton, Andrew; Kirwan, Gavin; Manahan, Grace; ...
Open Access English
  • Published: 01 Jan 2019
  • Publisher: Deutsches Elektronen-Synchrotron, DESY, Hamburg
Abstract
Modern particle accelerators and their applications increasingly rely on precisely coordinated interactions of intense charged particle and laser beams. Femtosecond-scale synchronization alongside micrometre-scale spatial precision are essential e.g. for pump-probe experiments, seeding and diagnostics of advanced light sources and for plasma-based accelerators. State-of-the-art temporal or spatial diagnostics typically operate with low-intensity beams to avoid material damage at high intensity. As such, we present a plasma-based approach, which allows measurement of both temporal and spatial overlap of high-intensity beams directly at their interaction point. It...
Subjects
arXiv: Physics::Accelerator Physics
free text keywords: physics.plasm-ph, physics.acc-ph, Physics - Plasma Physics, Physics - Accelerator Physics
Funded by
EC| LASERLAB-EUROPE
Project
LASERLAB-EUROPE
The Integrated Initiative of European Laser Research Infrastructures III
  • Funder: European Commission (EC)
  • Project Code: 284464
  • Funding stream: FP7 | SP4 | INFRA
,
EC| EuPRAXIA
Project
EuPRAXIA
Proposal for a Horizon 2020 Design Study on the “European Plasma Research Accelerator with eXcellence In Applications“ (EuPRAXIA)
  • Funder: European Commission (EC)
  • Project Code: 653782
  • Funding stream: H2020 | RIA
,
EC| EUCARD-2
Project
EUCARD-2
Enhanced European Coordination for Accelerator Research & Development
  • Funder: European Commission (EC)
  • Project Code: 312453
  • Funding stream: FP7 | SP4 | INFRA

23 Hogan, M. et al. Plasma wakefield acceleration experiments at FACET. New J. Phys. 12, 055030 (2010).

24 Augst, S., Meyerhofer, D.D., Strickland, D., and Chin, S.L. Laser ionization of noble gases by Coulomb-barrier suppression, J. Opt. Soc. Am. B, Vol. 8, No. 4, (1991). [OpenAIRE]

25 Kelly, R. L. Atomic and ionic spectrum lines below 2000 angstroms: hydrogen through krypton, pt. 1 J. Phys. Chem. Ref. Data 16, 1 (1987).

26 Durfee, C. G and Milchber, H. M. Light Pipe for High Intensity Laser Pulses, Physical Review Letters 71, 15 (1993) [OpenAIRE]

27 Ammosov, M., Delone, N. and Krainov, V. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 1191, 1986 (1986). [OpenAIRE]

28 Reiser, M. Theory and design of charged particle beams. 344-346 (Wiley-VCH, Weinheim, 2008).

29 Schram, B., De Heer, F.J., van der Wiel, M.J., and Kistemaker, J. Ionization cross sections for electrons (0.6-20 keV) in noble and diatomic gases. Physica 31, 94-112 (1965).

30 Nieter, C. and Cary, J. VORPAL: a versatile plasma simulation code. J. Comp. Phys. 196, 448-473 (2004). [OpenAIRE]

31 Bates, D.R., Recombination and the Helium Afterglow Spectrum, Phys. Rev. 82, 103, (1950).

32 Schmeltekopf, A.L. Jr. and Broida, H. P. Short-Duration Visible Afterglow in Helium, J. of. Chem. Phys. 39, 1261,

33 Chen, C. L., Leiby, C.C., and Goldstein, L. Electron Temperature Dependence of the Recombination Coefficient in Pure Helium, Phys. Rev. 121, 5 (1961).

Any information missing or wrong?Report an Issue