Local product structure for expansive homeomorphisms

Article, Preprint English OPEN
Artigue, Alfonso ; Brum, Joaquin ; Potrie, Rafael (2008)
  • Publisher: Elsevier BV
  • Journal: Topology and its Applications, volume 156, issue 4, pages 674-685 (issn: 0166-8641)
  • Related identifiers: doi: 10.1016/j.topol.2008.09.004
  • Subject: Geometry and Topology | 54H20 | 37B99 | 37D45 | Mathematics - Dynamical Systems | Mathematics - Geometric Topology
    arxiv: Mathematics::Dynamical Systems | Mathematics::Geometric Topology

Let $f\colon M\to M$ be an expansive homeomorphism with dense topologically hyperbolic periodic points, $M$ a compact manifold. Then there is a local product structure in an open and dense subset of $M$. Moreover, if some topologically hyperbolic periodic point has codi... View more
  • References (15)
    15 references, page 1 of 2

    [D] A.Dold, Lectures on Algebraic Topology, Springer-Verlag (1980) [FR] J. Franks and C. Robinson, A Quasi-Anosov Diffeomorphism that is not Anosov. Trans. Am. Math. Soc., 233 (1976), 267-278,

    [F1] J. Franks, Anosov Diffeomorphisms., Proc. Sympos. Pure Math., vol. 14 (1970), 61-93.

    [Hat] A. Hatcher, Algebraic Topology, Cambridge University Press, (2002) [HeHi] G. Hector and U. Hirsch, Introduction to the Geometry of Foliations, Part B, Aspects of Math. (1983) [H1] K. Hiraide, Expansive homeomorphisms with the pseudo-orbit tracing property of n-tori., J. Math.Soc. Japan, 41 (1989), 357-389.

    [H2] K. Hiraide, Expansive homeomorphisms of compact surfaces are pseudo-Anosov. Osaka J. Math 27, (1990), 117-162.

    [HiWa] W. Hsiang and C.T.C. Wall, On homotopy tori II., Bull. London Math. Soc., 1 (1969), 341-342.

    [HW] W. Hurewicz and H. Wallman, Dimension Theory (Princeton Math. Series 4), Princeton University Press (1948).

    [L1] J. Lewowicz, Persistence in expansive systems., Ergodic Theory and Dynamical Systems, 3 (1983), 567-578.

    [L2] J. Lewowicz, Expansive Homemorphisms of Surfaces, Bol. Soc. Bras. de Mat., 20 (1989), 113-133, [N] S. Newhouse, On codimension one Anosov diffeomorphisms, Amer. Jour. of Math., 92 (1970), 761-770.

    [R] W. Reddy, Expansive canonical coordinates are hyperbolic, Topology and its Appl.,13 (1982), 327-334.

    [So] V.V. Solodov, Components of topological foliations, Math. USSR Sbornik, 47 (1984), 329-343.

  • Metrics
    No metrics available
Share - Bookmark