Higher algebraic structures and quantization

Preprint, Other literature type English OPEN
Freed, Daniel S.;

We derive (quasi-)quantum groups in 2+1 dimensional topological field theory directly from the classical action and the path integral. Detailed computations are carried out for the Chern-Simons theory with finite gauge group. The principles behind our computations are p... View more
  • References (33)
    33 references, page 1 of 4

    [AC] D. Altschuler, A. Coste, Quasi-quantum groups, knots, three-manifolds, and topological field theory, Commun. Math. Phys. 150 (1992), 83-107.

    [A] M. F. Atiyah, Topological quantum field theory, Publ. Math. Inst. Hautes Etudes Sci. (Paris) 68 (1989), 175-186.

    [Be] J. Benabou, Introduction to bicategories, Lec. Notes in Math., vol. 47, Springer-Verlag, 1968, pp. 1-71.

    [Br] L. Breen, Th´eorie de Schreier sup´erieure, Ann. Sci. Ecole Norm. Sup. (4) 25 (1992), 465-514.

    [BMc] J.-L. Brylinski, D. A. McLaughlin, The geometry of degree four characteristic classes and of line bundles on loop spaces I (preprint, 1992).

    [DM] P. Deligne, J. S. Milne, Tannakian categories, Lec. Notes in Math., vol. 900, SpringerVerlag, 1982, pp. 101-228.

    [DPR] R. Dijkgraaf, V. Pasquier, P. Roche, Quasi-quantum groups related to orbifold models, Nuclear Phys. B. Proc. Suppl. 18B (1990), 60-72.

    [DVVV] R. Dijkgraaf, C. Vafa, E. Verlinde, H. Verlinde, Operator algebra of orbifold models, Commun. Math. Phys. 123 (1989), 485-526.

    [DW] R. Dijkgraaf, E. Witten, Topological gauge theories and group cohomology, Commun. Math. Phys. 129 (1990), 393-429.

    [Dr] V. G. Drinfeld, Quasi-Hopf algebras and Knizhnik-Zamolodchikov equations, Problems of modern quantum field theory (Alushta, 1989) (A. Belavin et al., eds.), Springer-Verlag, 1989, pp. 1-13.

  • Related Organizations (2)
  • Bioentities (1)
    1the Protein Data Bank
  • Metrics
Share - Bookmark