## New Exact Solutions for New Model Nonlinear Partial Differential Equation

*Maher, A.*;

*El-Hawary, H. M.*;

*Al-Amry, M. S.*;

- Publisher: Hindawi Publishing Corporation
- Journal: issn: 1110-757X, eissn: 1687-0042
Related identifiers: doi: 10.1155/2013/767380 - Subject: Mathematics | QA1-939 | Article Subjectarxiv: Computer Science::Computational Geometry

- References (19) 19 references, page 1 of 2
- 1
- 2

Ayhan, B., Bekir, A.. The G'/G-expansion method for the nonlinear lattice equations. Communications in Nonlinear Science and Numerical Simulation. 2012; 17 (9): 3490-3498

Vakhnenko, V. O., Parkes, E. J., Morrison, A. J.. A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation. Chaos, Solitons & Fractals. 2003; 17 (4): 683-692

Liu, X. Q., Jiang, S., Fan, W. B., Liu, W. M.. Soliton solutions in linear magnetic field and time-dependent laser field. Communications in Nonlinear Science and Numerical Simulation. 2004; 9: 361-365

Hirota, R.. Exact solution of Kortewege-de Vries equation for multiplecollisions of solitons. Physical Review Letters. 1971; 27: 1192-1194

Tanoğlu, G.. Solitary wave solution of nonlinear multi-dimensional wave equation by bilinear transformation method. Communications in Nonlinear Science and Numerical Simulation. 2007; 12 (7): 1195-1201

Malfliet, W.. Solitary wave solutions of nonlinear wave equations. American Journal of Physics. 1992; 60 (7): 650-654

Wazwaz, A.-M.. New solitons and kink solutions for the Gardner equation. Communications in Nonlinear Science and Numerical Simulation. 2007; 12 (8): 1395-1404

Wazwaz, A.-M.. A sine-cosine method for handling nonlinear wave equations. Mathematical and Computer Modelling. 2004; 40 (5-6): 499-508

Bekir, A.. New solitons and periodic wave solutions for some nonlinearphysical models by using sine—cosine method. Physica Scripta. 2008; 77 (4, article 501)

Wadati, M., Sanuki, H., Konno, K.. Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws. Progress of Theoretical Physics. 1975; 53: 419-436

- Metrics No metrics available

- Download from

- Cite this publication