3-D numerical simulations of earthquake ground motion in sedimentary basins: testing accuracy through stringent models

Article English OPEN
Chaljub , Emmanuel ; Maufroy , Emeline ; Moczo , Peter ; Kristek , Jozef ; HOLLENDER , Fabrice ; Bard , Pierre-Yves ; Priolo , Enrico ; Klin , Peter ; De Martin , Florent ; Zhang , Zhenguo ; Zhang , Wei ; Chen , Xiaofei (2015)
  • Publisher: Oxford University Press (OUP)
  • Related identifiers: doi: 10.1093/gji/ggu472
  • Subject: Numerical solutions | METHODE NUMERIQUE | Numerical approximation and analysis | [ INFO.INFO-MO ] Computer Science [cs]/Modeling and Simulation | GENIE SISMIQUE | [ SPI.GCIV.RISQ ] Engineering Sciences [physics]/Civil Engineering/Risques | Computational seismology | [ INFO.INFO-DC ] Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] | ONDE SISMIQUE | PREVISION | Wave propagation | Earthquake ground motion | [ SDU.STU.GP ] Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] | [ SDU.OTHER ] Sciences of the Universe [physics]/Other | Site effects
    arxiv: Physics::Geophysics

International audience; SUMMARY Differences between 3-D numerical predictions of earthquake ground motion in the Mygdonian basin near Thessaloniki, Greece, led us to define four canonical stringent models derived from the complex realistic 3-D model of the Mygdonian bas... View more
  • References (20)
    20 references, page 1 of 2

    Backus, G. E., 1962. Long-wave elastic anisotropy produced by horizontal layering, J. Geophys. Res., 67(11), 4427-4440.

    Bard, P.-Y., 1994. Discussion session: Lessons, issues, needs and prospects. Special Theme session 5: Turkey Flat and Ashigara Valley experiments, in Tenth World Conference of Earthquake Engineering, Proceedings.

    Bielak, J., Graves, R. W., Olsen, K. B., Taborda, R., Ram´ırezGuzm´an, L., Day, S. M., Ely, G. P., Roten, D., Jordan, T. H., Maechling, P. J., Urbanic, J., Cui, Y., & Juve, G., 2010. The ShakeOut earthquake scenario: Verification of three simulation sets, Geophys. J. Int., 180(1), 375-404.

    Bouchon, M., 1981. A simple method to calculate Green's functions for elastic layered media, Bull. Seismol. Soc. Am., 71(4), 959-971.

    Bouchon, M., 2003. A review of the discrete wavenumber method, Pure Appl. Geophys., 160(3-4), 445-465.

    Boyd, J. P., 2001. Chebyshev and Fourier spectral methods, Courier Dover Publications.

    Capdeville, Y. & Marigo, J.-J., 2008. Shallow layer correction for Spectral Element like methods, Geophys. J. Int., 172(3), Bull. Seismol. Soc. Am., 92(8), 3042-3066.

    Moczo, P., Kristek, J., & G´alis, M., 2004. Simulation of the planar free surface with near-surface lateral discontinuities in the finite-difference modeling of seismic motion, Bull. Seismol. Soc. Am., 94(2), 760-768.

    Moczo, P., Kristek, J., & G´alis, M., 2014. The FiniteDifference Modelling of Earthquake Motions Waves and Ruptures, Cambridge University Press.

    O˝ zdenvar, T. & McMechan, G. A., 1996. Causes and reduction of numerical artifacts in pseudo-spectral wavefield extrapolation, Geophys. J. Int., 126, 819-828.

  • Metrics
    No metrics available
Share - Bookmark