publication . Article . Other literature type . 2017

Transcranial Electric Stimulation for Precision Medicine: A Spatiomechanistic Framework.

Fatemeh Yavari; Michael A. Nitsche; Hamed Ekhtiari;
Open Access English
  • Published: 13 Apr 2017
During recent years, non-invasive brain stimulation, including transcranial electrical stimulation (tES) in general, and transcranial direct current stimulation (tDCS) in particular, have created new hopes for treatment of neurological and psychiatric diseases. Despite promising primary results in some brain disorders, a more widespread application of tES is hindered by the unsolved question of determining optimum stimulation protocols to receive meaningful therapeutic effects. tES has a large parameter space including various montages and stimulation parameters. Moreover, inter- and intra-individual differences in responding to stimulation protocols have to be ...
free text keywords: transcranial electrical stimulation (tES) ; montage ; individualized ; spatiomechanistic ; precision medicine ; application, protocol ; transcranial direct current stimulation (tDCS), transcranial electrical stimulation, transcranial direct current stimulation, individualized protocol, Neuroscience, Hypothesis and Theory, transcranial electrical stimulation (tES), transcranial direct current stimulation (tDCS), application, protocol, montage, precision medicine, individualized, spatiomechanistic, Biological Psychiatry, Behavioral Neuroscience, Neuropsychology and Physiological Psychology, Neurology, Psychiatry and Mental health, Psychology, Clinical neuroscience, Transcranial direct-current stimulation, medicine.medical_treatment, medicine, Brain stimulation, Brain mapping, Neurodiversity, Stimulation
Related Organizations
Funded by
Studying, Measuring and Altering Consciousness through information theory in the electrical brain
  • Funder: European Commission (EC)
  • Project Code: 686764
  • Funding stream: H2020 | RIA
FET H2020FET OPEN: FET-Open research projects
FET H2020FET OPEN: Studying, Measuring and Altering Consciousness through information theory in the electrical brain
137 references, page 1 of 10

Alonzo A. Brassil J. Taylor J. L. Martin D. Loo C. K. (2012). Daily transcranial direct current stimulation (tDCS) leads to greater increases in cortical excitability than second daily transcranial direct current stimulation. Brain Stimul. 5, 208–213. 10.1016/j.brs.2011.04.006 22037139 [OpenAIRE] [PubMed] [DOI]

Antal A. Varga E. T. Kincses T. Z. Nitsche M. A. Paulus W. (2004). Oscillatory brain activity and transcranial direct current stimulation in humans. Neuroreport 15, 1307–1310. 10.1097/01.WNR.0000127460.08361.84 15167555 [PubMed] [DOI]

Ardolino G. Bossi B. Barbieri S. Priori A. (2005). Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. J. Physiol. 568, 653–663. 10.1113/jphysiol.2005.088310 16037080 [OpenAIRE] [PubMed] [DOI]

Arnsten A.F.T. Castellanos F. X. (2011). “Neurobiology of attention regulation and its disorders,” in Pediatric Psychopharmacology: Principles and Practice, (2nd Edn.), eds Martin A. Scahill L. Kratochvi C.J. (New York, NY: Oxford University Press), 95–111.

Ashley E. A. (2015). The precision medicine initiative: a new national effort. JAMA. 313, 2119–2120. 10.1001/jama.2015.3595 25928209 [OpenAIRE] [PubMed] [DOI]

Baker J. M. Rorden C. Fridriksson J. (2010). Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke 41, 1229–1236. 10.1161/STROKEAHA.109.576785 2983048 [OpenAIRE] [PubMed] [DOI]

Bandeira I. D. Guimarães R. S. Jagersbacher J. G. Barretto T. L. de Jesus-Silva J. R. Santos S. N. . (2016). Transcranial direct current stimulation in children and adolescents with attention-deficit/hyperactivity disorder (ADHD): a pilot study. J. Child Neurol. 31, 918–924. 10.1177/0883073816630083 26879095 [OpenAIRE] [PubMed] [DOI]

Barbas H. Pandya D. N. (1989). Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 286, 353–375. 10.1002/cne.902860306 2768563 [OpenAIRE] [PubMed] [DOI]

Benabid A. L. Pollak P. Gao D. Hoffmann D. Limousin P. Gay E. . (1996). Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J. Neurosurg. 84, 203–214. 10.3171/jns.1996.84.2.0203 8592222 [OpenAIRE] [PubMed] [DOI]

Bianchi M. T. Caviness V. S. Cash S. S (Eds). (2012). Network Approaches to Diseases of the Brain. Oak Park, IL: Bentham Science Publishers.

Bindman L. J. Lippold O. Redfearn J. (1964). The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J. Physiol. 172, 369–382. 10.1113/jphysiol.1964.sp007425 14199369 [OpenAIRE] [PubMed] [DOI]

Boggio P. S. Sultani N. Fecteau S. Merabet L. Mecca T. Pascual-Leone A. . (2008). Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: a double-blind, sham-controlled study. Drug Alcohol Depend. 92, 55–60. 10.1016/j.drugalcdep.2007.06.011 17640830 [OpenAIRE] [PubMed] [DOI]

Bonson K. R. Grant S. J. Contoreggi C. S. Links J. M. Metcalfe J. Weyl H. L. . (2002). Neural systems and cue-induced cocaine craving. Neuropsychopharmacology 26, 376–386. 10.1016/s0893-133x(01)00371-2 11850152 [OpenAIRE] [PubMed] [DOI]

Boyle M. R. Frohlich F. (2013). “EEG feedback-controlled transcranial alternating current stimulation,” in Neural Engineering (NER), 2013 6th International IEEE/EMBS Conference on: IEEE (San Diego, CA), 140–143.

Brietzke A. P. Rozisky J. R. Dussan-Sarria J. A. Deitos A. Laste G. Hoppe P. F. . (2015). Neuroplastic effects of transcranial direct current stimulation on painful symptoms reduction in chronic Hepatitis C: a phase II randomized, double blind, sham controlled trial. Front. Neurosci. 9:498. 10.3389/fnins.2015.00498 26793047 [OpenAIRE] [PubMed] [DOI]

137 references, page 1 of 10
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue