publication . Article . 2017

Assessing extraterrestrial regolith material simulants for in-situ resource utilisation based 3D printing

Goulas, A; Binner, JGP; Harris, RA; Friel, RJ;
Open Access
  • Published: 01 Mar 2017 Journal: Applied Materials Today, volume 6, pages 54-61 (issn: 2352-9407, Copyright policy)
  • Publisher: Elsevier BV
  • Country: United Kingdom
Abstract
This research paper investigates the suitability of ceramic multi-component materials, which are found on the Martian and Lunar surfaces, for 3D printing (aka Additive Manufacturing) of solid structures. 3D printing is a promising solution as part of the cutting edge field of future in situ space manufacturing applications. 3D printing of physical assets from simulated Martian and Lunar regolith was successfully performed during this work by utilising laser-based powder bed fusion equipment. Extensive evaluation of the raw regolith simulants was conducted via Optical and Electron Microscopy (SEM), Visible–Near Infrared/Infrared (Vis–NIR/IR) Spectroscopy and ther...
Subjects
free text keywords: Materials science, Chemical engineering, Martian, Mineralogy, Thermal analysis, Thermogravimetric analysis, In situ resource utilization, Differential scanning calorimetry, Regolith, Space manufacturing, Ceramic, visual_art.visual_art_medium, visual_art
Related Organizations
35 references, page 1 of 3

B. Hufenbach, T. Reiter, E. Sourgens, ESA strategic planning for space exploration, Space Policy. 30 (2014) 174–177. doi:10.1016/j.spacepol.2014.07.009. [OpenAIRE]

T.P. Gouache, N. Patel, C. Brunskill, G.P. Scott, C.M. Saaj, M. Matthews, L. Cui, Soil simulant sourcing for the ExoMars rover testbed, Planet. Space Sci. 59 (2011) 779–787.

doi:10.1016/j.pss.2011.03.006.

J.A. Happel, Indigenous Materials for Lunar Construction, Appl. Mech. Rev. 46 (1993) 313. doi:10.1115/1.3120360.

W.Z. Sadeh, M.E. Criswell, Infrastructure for a Lunar base, Adv. Sp. Res. 18 (1996) 139– 148. [OpenAIRE]

S. Sen, C.S. Ray, R.G. Reddy, Processing of lunar soil simulant for space exploration applications, Mater. Sci. Eng. A. 413–414 (2005) 592–597.

H. Arslan, S. Sture, S. Batiste, Experimental simulation of tensile behavior of lunar soil simulant JSC 1, Mater. Sci. Eng. A. 478 (2008) 201–207. doi:10.1016/j.msea.2007.05.113. [OpenAIRE]

H. Benaroya, L. Bernold, Engineering of lunar bases, Acta Astronaut. 62 (2008) 277–299.

doi:10.1016/j.actaastro.2007.05.001.

F. Ceccanti, E. Dini, X. De Kestelier, V. Colla, L. Pambaguian, 3D printing technology for a moon outpost exploiting lunar soil, in: 61st Int. Astronaut. Congr. Prague, CZ, IAC 10 D3, 2010: pp. 1–9.

http://www.spacerenaissance.org/projects/LHD/Praga_Conference_Luna.pdf (accessed September 4, 2014).

V.K. Balla, L.B. Roberson, G.W.O. OConnor, S. Trigwell, S. Bose, A. Bandyopadhyay, First Demonstration on Direct Laser Fabrication of Lunar Regolith Parts, Rapid Prototyp. J. 18 (2010) 451–457. doi:10.1108/13552541211271992.

[11] M. Fateri, K. Maziar, On site Additive Manufacturing by Selective Laser Melting of composite objects, Concepts Approaches Mars Explor. 305 (2012) 842–845.

doi:10.1126/science.3050842.

[12] A. Goulas, R.J. Friel, 3D printing with moondust, Rapid Prototyp. J. 22 (2016). doi:10.1108/RPJ 02 2015 0022. [OpenAIRE]

35 references, page 1 of 3
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2017

Assessing extraterrestrial regolith material simulants for in-situ resource utilisation based 3D printing

Goulas, A; Binner, JGP; Harris, RA; Friel, RJ;