A survey on computational intelligence approaches for predictive modeling in prostate cancer

Article English OPEN
Cosma, G; Brown, D; Archer, M; Khan, M; Pockley, AG;
(2017)

Predictive modeling in medicine involves the development of computational models which are capable of analysing large amounts of data in order to predict healthcare outcomes for individual patients. Computational intelligence approaches are suitable when the data to be ... View more
  • References (82)
    82 references, page 1 of 9

    Alexey, A. D., Eugenia, E., Rosenberg, G. S., & Krasnov, e. a. (2015). Identi cation of novel epigenetic markers of prostate cancer by noti-microarray analysis. Disease Markers, 2015 .

    Arevalo, J. E., Cruz-Roa, A., Arias, V., Romero, E., & Gonzalez, F. A. (2015a). An unsupervised feature learning framework for basal cell carcinoma image analysis. Arti cial Intelligence in Medicine, 64 , 131{145.

    1350 Arevalo, J. E., Gonzalez, F. A., Ramos-Pollan, R., Oliveira, J. L., & GuevaraLopez, M. A. (2015b). Convolutional neural networks for mammography mass lesion classi cation. In EMBC (pp. 797{800). IEEE.

    Azizi, S., Imani, F., Zhuang, B., Tahmasebi, A., Kwak, J. T., Xu, S., Uniyal, N., Turkbey, B., Choyke, P., Pinto, P., Wood, B., Moradi, M., Mousavi, P., & Abolmaesumi, P. (2015). Medical image computing and computerassisted intervention { miccai 2015: 18th international conference, munich, germany, october 5-9, 2015, proceedings, part ii. chapter Ultrasound-Based Detection of Prostate Cancer Using Automatic Feature Selection with Deep Belief Networks. (pp. 70{77). Cham: Springer International Publishing.

    1360 Balachandran, K., & Anitha, R. (2013). Ensemble based optimal classi cation model for pre-diagnosis of lung cancer. In Computing, Communications and Networking Technologies (ICCCNT), 2013 Fourth International Conference on (pp. 1{7). IEEE.

    Benecchi, L. (2006). Neuro-fuzzy system for prostate cancer diagnosis. Urology, 68 , 357 { 361.

    Bengio, Y. (2013). Statistical language and speech processing: First international conference, slsp 2013, tarragona, spain, july 29-31, 2013. proceedings. In A.-H. Dediu, C. Mart n-Vide, R. Mitkov, & B. Truthe (Eds.), Deep Learning of Representations: Looking Forward (pp. 1{37). Berlin, Heidelberg: Springer Berlin Heidelberg.

    Bianchi, L., Dorigo, M., Gambardella, L., & Gutjahr, W. (2009). A survey on metaheuristics for stochastic combinatorial optimization. Natural Computing, 8 , 239{287.

    Black, W. C. (1999). Should this patient be screened for cancer? Clinical Practice, 2 , 86{95.

    Bourdes, V., Bonnevay, S., Lisboa, P. J., Aung, M. H., Chabaud, S., Bachelot, T., Perol, D., & Negrier, S. (2007). Breast cancer predictions by neural networks analysis: a comparison with logistic regression. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE (pp. 5424{5427). IEEE.

  • Related Research Results (1)
  • Metrics
    0
    views in OpenAIRE
    0
    views in local repository
    378
    downloads in local repository

    The information is available from the following content providers:

    FromNumber Of ViewsNumber Of Downloads
    Institutional Repository - IRUS-UK 0 378
Share - Bookmark