Quantum dot superluminescent diodes for optical coherence tomography: device engineering

Article English OPEN
Greenwood, P.D.L. ; Childs, D.T.D. ; Kennedy, K. ; Groom, K.M. ; Hugues, M. ; Hopkinson, M. ; Hogg, R.A. ; Krstajic, N. ; Smith, L.E. ; Matcher, S.J. ; Bonesi, M. ; MacNeil, S. ; Smallwood, R. (2010)
  • Publisher: Institute of Electrical and Electronics Engineers

We present a 18 m W fiber-coupled single-mode super-luminescent diode with 85 nm bandwidth for application in optical coherence tomography (OCT). First, we describe the effect of quantum dot (QD) growth temperature on optical spectrum and gain, highlighting the need for the optimization of epitaxy for broadband applications. Then, by incorporating this improved material into a multicontact device, we show how bandwidth and power can be controlled. We then go on to show how the spectral shape influences the autocorrelation function, which exhibits a coherence length of < 11 mu m, and relative noise is found to be 10 dB lower than that of a thermal source. Finally, we apply the optimum device to OCT of in vivo skin and show the improvement that can be made with higher power, wider bandwidth, and lower noise, respectively.
  • References (36)
    36 references, page 1 of 4

    [1] R. Ell, U. Morgner, F. X. Ka¨rtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, “Generation of 5-fs pulses and octave-spanning spectra directly from a Ti: Sapphire laser,” Opt. Lett., vol. 26, pp. 373-375, Mar. 2001.

    [2] W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications. Berlin, Germany: Springer-Verlag, 2008.

    [3] J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett., vol. 28, no. 21, pp. 2067-2069, Nov. 2003.

    [4] R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Exp., vol. 11, no. 8, pp. 889-894, Apr. 2003.

    [5] R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370000 lines/s,” Opt. Lett., vol. 31, pp. 2975- 2977, Oct. 2006.

    [6] M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Exp., vol. 12, pp. 2404-2422, May 2004.

    [7] Y. Wang, J. S. Nelson, and Z. Chen, “Optimal wavelength for ultrahighresolution optical coherence tomography,” Opt. Exp., vol. 11, pp. 1411- 1417, Jun. 2003.

    [8] J. Welzel, E. Lankenau, G. Hu¨ttmann, and R. Birngruber, “OCT in dermatology,” in Optical Coherence Tomography. Berlin, Germany/New York: Springer-Verlag, 2008, pp. 1103-1122.

    [9] L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett., vol. 41, no. 1, pp. 41-43, Jan. 2005.

    [10] S. K. Ray, T. L. Choi, K. M. Groom, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “High-power 1.3-µm quantum-dot superluminescent lightemitting diode grown by molecular beam epitaxy,” IEEE Photon. Technol. Lett., vol. 19, no. 2, pp. 109-111, Jan. 2007.

  • Related Research Results (1)
  • Metrics
    No metrics available
Share - Bookmark