publication . Article . 2009

Voltage-programmable liquid optical interface

Brown, Carl; Wells, Gary; Newton, Michael; McHale, Glen;
Open Access
  • Published: 21 Jun 2009 Journal: Nature Photonics, volume 3, pages 403-405 (issn: 1749-4885, eissn: 1749-4893, Copyright policy)
  • Publisher: Springer Science and Business Media LLC
  • Country: United Kingdom
Recently, there has been intense interest in photonic devices based on microfluidics, including displays and refractive tunable microlenses and optical beamsteerers, that work using the principle of electrowetting. Here, we report a novel approach to optical devices in which static wrinkles are produced at the surface of a thin film of oil as a result of dielectrophoretic forces. We have demonstrated this voltage-programmable surface wrinkling effect in periodic devices with pitch lengths of between 20 and 240 µm and with response times of less than 40 µs. By a careful choice of oils, it is possible to optimize either for high-amplitude sinusoidal wrinkles at mi...
free text keywords: Atomic and Molecular Physics, and Optics, Electronic, Optical and Magnetic Materials, Physics, Optics, business.industry, business, Optical fiber, law.invention, law, Biophotonics, Optoelectronics, 3D optical data storage, Diffraction grating, Microfluidics, Dielectrophoresis, Photonics, Voltage, F300
Related Organizations
26 references, page 1 of 2

[1] Hayes, R. A. & Feenstra, B. J. Video-speed electronic paper based on electrowetting. Nature 425, 383-385 (2003).

[2] Heikenfeld, J. & Steckl, A.J. High-transmission electrowetting light valves. Appl. Phys. Lett. 86, 151121-151123 (2005). [OpenAIRE]

[3] Berge, B. & Peseux, J. Variable focal lens controlled by an external voltage: An application of electrowetting. Euro. Phys. J. E 3, 159-163 (2000).

[4] Kuiper, S. & Hendriks, B. H. W. Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 85, 1128-1130 (2004). [OpenAIRE]

[5] Smith, N.R., Abeysinghe, D.C., Haus, J.W. & Heikenfeld, J. Agile wide-angle beam steering with electrowetting microprisms. Opt. Exp. 14, 6557-6563 (2006).

[6] de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827-862 (1985).

[7] Mugele, F. & Baret, J. C. Electrowetting: From basics to applications. J. Phys. Condens. Matter 17, R705-R774 (2005). [OpenAIRE]

[8] Pellat, H. Mésure de la force agissant sur les diélectriques liquides non électrisés placés dans un champ électrique. C. R. Acad. Sci. Paris 119, 691-694 (1895).

[9] Pohl, H.A. Dielectrophoresis: The behaviour of neutral matter in non-uniform electric fields. (Cambridge Monographs on Physics: Cambridge University Press, Cambridge, 1978).

[10] Lorrain, P. & Corson, D.R. Electromagnetic Fields and Waves. 2nd ed. (W.H. Freeman, San Francisco, CA, 1970).

[11] Pethig, R. Using Inhomogeneous AC Electrical Fields to Separate and Manipulate Cells, Crit. Rev. Biotech. 16, 331-348 (1996).

[12] Jones, T.B., Gunjii, M., Washizu, M. & Feldman, M.J. Dielectrophoretic liquid actuation and nanodroplet formation. J. Appl. Phys. 89, 1441-1448 (2001). [OpenAIRE]

[13] Born, M. & Wolf, E. Principles of optics. 7th ed. (Cambridge University Press, Cambridge, 2005).

[14] Knovel Critical Tables (2nd Edition). Knovel, 2003.

[15] Hutley, M.C. Diffraction Gratings. (Academic Press, London, 1982).

26 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue