How to Play a Disc Brake: A Dissipation-Induced Squeal

Article English OPEN
Kirillov, Oleg;

The eigenvalues of an elastic body of revolution, rotating about its axis of symmetry, form a ‘spectral mesh’. The nodes of the mesh in the plane ‘frequency’ versus ‘gyroscopic parameter’ correspond to the double eigenfrequencies. With the use of the perturbation theory... View more
  • References (49)
    49 references, page 1 of 5

    1. G. Bryan, On the beats in the vibrations of a revolving cylinder or bell. Proc. Cambridge Philos. Soc. 7, 101-111 (1890).

    2. R. Southwell, On the Free Transverse Vibrations of a Uniform Circular Disc Clamped at its Centre; and on the Effect of Rotation. Proc. Roy. Soc. Lond. 101, 133-153 (1922).

    3. W.D. Iwan, K.J. Stahl, The response of an elastic disc with a moving mass system. Trans. ASME. J. Appl. Mech. 40, 445-451 (1973).

    4. A.W. Leissa, On a curve veering aberration. ZAMP 25, 99-111 (1974).

    5. V.M. Lakhadanov, On stabilization of potential systems. Prikl. Mat. Mekh. 39(1), 53-58 (1975).

    6. A.P. French, In Vino Veritas: A study of wineglass acoustics. Am. J. Phys. 51(8), 688-694 (1983).

    7. G.S. Schajer, The vibration of a rotating circular string subject to a fixed end restraint. J. Sound Vibr. 92, 11-19 (1984).

    8. N.C. Perkins, C.D. Mote, Comments on curve veering in eigenvalue problems. J. Sound Vibr. 106, 451-463 (1986).

    9. S. Barnett, Leverrier's algorithm: a new proof and extensions. SIAM J. Matrix Anal. Appl. 10(4), 551- 556 (1989).

    10. K. Popp, P. Stelter, Stick-slip vibrations and chaos. Phil. Trans. R. Soc. Lond. A. 332, 89-105 (1990).

  • Metrics
Share - Bookmark