# On Some Properties of Traveling Water Waves with Vorticity

- Published: 01 Jan 2008
- Publisher: Society for Industrial and Applied Mathematics
- Country: United Kingdom

- University of Reading United Kingdom
- University of Bath United Kingdom

- 1
- 2

[1] C. J. Amick and J. F. Toland, On solitary water-waves of finite amplitude, Arch. Rational Mech. Anal., 76 (1981), pp. 9-95.

[2] C. J. Amick and J. F. Toland, On periodic water-waves and their convergence to solitary waves in the long-wave limit, Philos. Trans. Roy. Soc. London Ser. A, 303 (1981), pp. 633- 669.

[3] C. J. Amick, L. E. Fraenkel, and J. F. Toland, On the Stokes conjecture for the wave of extreme form, Acta Math., 148 (1982), pp. 193-214. [OpenAIRE]

[4] A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), pp. 523-535.

[5] A. Constantin, M. Ehrnstro¨m, and E. Wahle`n, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 3 (2007), pp. 591-603.

[6] A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), pp. 423-431.

[7] A. Constantin, D. Sattinger, and W. Strauss, Variational formulations for steady water waves with vorticity, J. Fluid Mech., 548 (2006), pp. 151-163. [OpenAIRE]

[8] A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57 (2004), pp. 481-527.

[9] A. Constantin and W. Strauss, Rotational steady water waves near stagnation, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 365 (2007), pp. 2227-2239.

[10] A. Constantin and W. Strauss, Stability properties of steady water waves with vorticity, Comm. Pure Appl. Math., 60 (2007), pp. 911-950.

[11] M. Ehrnstro¨m, Deep-water waves with vorticity: Symmetry and rotational behaviour, Discrete Contin. Dyn. Syst., 19 (2007), pp. 483-491.

[12] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin, 1983.

[13] V. M. Hur, Global bifurcation theory of deep-water waves with vorticity, SIAM J. Math. Anal., 37 (2006), pp. 1482-1521.

[14] G. Keady and J. Norbury, On the existence theory for irrotational water waves, Math. Proc. Camb. Philos. Soc., 83 (1978), pp. 137-157. [OpenAIRE]

[15] J. Ko and W. Strauss, Large-amplitude steady rotational water waves, Eur. J. Mech. B Fluids, to appear.

- 1
- 2