The impact of numeracy on reactions to different graphic risk presentation formats: An experimental analogue study

Article English OPEN
Wright, Alison J.; Whitwell, Sophia C. L.; Takeichi, Chika; Hankins, Matthew; Marteau, Theresa M.;

Objectives: Numeracy, the ability to process basic mathematical concepts, may affect responses to graphical displays of health risk information. Displays of probabilistic risk information using grouped dots are easier to understand than displays using dispersed dots. Ho... View more
  • References (36)
    36 references, page 1 of 4

    Allen, M. J., & Yen, W. M. (1979). Introduction to measurement theory. Monterey, CA: BrooksCole.

    Ancker, J. S., Senathirajah, Y., Kukafka, R., & Starren, J. B. (2006). Design features of graphs in health risk communication: A systematic review. Journal of the American Medical Informatics Association, 13, 608-618.

    Baty, B. J., Venne, V., McDonald, J., Croyle, R. T., Halls, C., Nash, J., et al. (1997). BRCA1 testing: Genetic counseling protocol development and counseling issues. Journal of Genetic Counseling, 6, 223-244.

    Berry, D. (2004). Risk, communication and health psychology. Maidenhead, UK: Open University Press.

    Cameron, L. D., & Diefenbach, M. A. (2001). Responses to information about psychosocial consequences of genetic testing for breast cancer susceptibility: Influences of cancer worry and risk perceptions. Journal of Health Psychology, 6, 47-59.

    Clore, G. L., Gasper, K., & Garvin, E. (2001). Affect as information. In J. P. Forgas (Ed.), Handbook of affect and social cognition (pp. 121-144). Hillsdale, NJ: Erlbaum.

    Cosmides, L., & Tooby, J. (1996). Are humans good intuitive statisticians after all? Rethinking some conclusions from the literature on judgment under uncertainty. Cognition, 58, 1-73.

    Croyle, R. T., Sun, Y. C., & Hart, M. (1997). Processing risk factor information: Defensive biases in health-related judgments and memory. In K. J. Petrie & J. A. Weinman (Eds.), Perceptions of health and illness: Current research and applications (pp. 267-290). Amsterdam: Harwood Academic Publishers.

    Feldman-Stewart, D., Kocovski, N., McConnell, B. A., Brundage, M. D., & Mackillop, W. J. (2000). Perception of quantitative information for treatment decisions. Medical Decision Making, 20, 228-238.

    Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction - frequency formats. Psychological Review, 102, 684-704.

  • Metrics
Share - Bookmark