The K-theory of free quantum groups

Article English OPEN
Vergnioux, R.; Voigt, C.;
(2013)
  • Publisher: Springer-Verlag
  • Subject:
    arxiv: Mathematics::K-Theory and Homology | Mathematics::Operator Algebras

In this paper we study the K -theory of free quantum groups in the sense of Wang and Van Daele, more precisely, of free products of free unitary and free orthogonal quantum groups. We show that these quantum groups are K -amenable and establish an analogue of the Pimsne... View more
  • References (36)
    36 references, page 1 of 4

    [1] Saad Baaj and Georges Skandalis. C -algebres de Hopf et theorie de Kasparov equivariante. K-Theory, 2(6):683{721, 1989.

    [2] Saad Baaj and Georges Skandalis. Unitaires multiplicatifs et dualite pour les produits croises de C -algebres. Ann. Sci. Ecole Norm. Sup. (4), 26(4):425{488, 1993.

    [3] Saad Baaj and Stefaan Vaes. Double crossed products of locally compact quantum groups. J. Inst. Math. Jussieu, 4(1):135{173, 2005.

    [4] Teodor Banica. Theorie des representations du groupe quantique compact libre O(n). C. R. Acad. Sci. Paris Ser. I Math., 322(3):241{244, 1996.

    [5] Teodor Banica. Le groupe quantique compact libre U(n). Comm. Math. Phys., 190(1):143{ 172, 1997.

    [6] Paul Baum and Alain Connes. Geometric K-theory for Lie groups and foliations. Enseign. Math. (2), 46(1-2):3{42, 2000.

    [7] Paul Baum, Alain Connes, and Nigel Higson. Classifying space for proper actions and Ktheory of group C -algebras. In C -algebras: 1943{1993 (San Antonio, TX, 1993), volume 167 of Contemp. Math., pages 240{291. Amer. Math. Soc., Providence, RI, 1994.

    [8] Julien Bichon, An De Rijdt, and Stefaan Vaes. Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups. Comm. Math. Phys., 262(3):703{728, 2006.

    [9] Bruce Blackadar. K-theory for operator algebras, volume 5 of Mathematical Sciences Research Institute Publications. Cambridge University Press, Cambridge, second edition, 1998.

    [10] Joachim Cuntz. The K-groups for free products of C -algebras. In Operator algebras and applications, Part I (Kingston, Ont., 1980), volume 38 of Proc. Sympos. Pure Math., pages 81{84. Amer. Math. Soc., Providence, R.I., 1982.

  • Metrics
Share - Bookmark