The reciprocal theorem and swimmer interactions

0044 English OPEN
Papavassiliou, Dario;
  • Subject: QC

We present a number of solutions for the hydrodynamic interaction between microscopic swimmers in a viscous fluid and confining geometries. The reciprocal theorem is adapted for this use, allowing existing solutions for Stokes drag problems to be used to calculate the m... View more
  • References (141)
    141 references, page 1 of 15

    [1] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao, and R. A. Simha. Hydrodynamics of soft active matter. Rev. Mod. Phys., 85(3):1143, 2013.

    [2] J. Elgeti, Roland G. Winkler, and G. Gompper. Physics of microswimmers-single particle motion and collective behavior: a review. Rep. Prog. Phys., 78(5):056601, 2015.

    [3] E. M. Purcell. Life at low Reynolds number. Am. J. Phys, 45(1):3-11, 1977.

    [4] D. Lopez and E. Lauga. Dynamics of swimming bacteria at complex interfaces. Phys. Fluids, 26(7):071902, 2014.

    [5] G. I. Taylor. Low-Reynolds-number flows, 1967. no. 21617, The National Committe for Fluid Mechanics Films.

    [6] C. M. Pooley, G. P. Alexander, and J. M. Yeomans. Hydrodynamic interaction between two swimmers at low Reynolds number. Phys. Rev. Lett., 99(22): 228103, 2007.

    [7] E. Lauga and D. Bartolo. No many-scallop theorem: Collective locomotion of reciprocal swimmers. Phys. Rev. E, 78(3):030901, 2008.

    [8] G. P. Alexander, C. M. Pooley, and J. M. Yeomans. Scattering of lowReynolds-number swimmers. Phys. Rev. E, 78:045302, 2008.

    [9] A. Shapere and F. Wilczek. Geometry of self-propulsion at low Reynolds number. J. Fluid Mech., 198:557-585, 1989.

    [10] A. Shapere and F. Wilczek. Efficiencies of self-propulsion at low Reynolds number. J. Fluid Mech., 198:587-599, 1989.

  • Metrics
Share - Bookmark