A methodological framework for Monte Carlo probabilistic inference for diffusion processes

Book English OPEN
Papaspiliopoulos, Omiros;
(2009)
  • Publisher: University of Warwick. Centre for Research in Statistical Methodology
  • Subject: QA

The methodological framework developed and reviewed in this article concerns the\ud unbiased Monte Carlo estimation of the transition density of a diffusion process, and\ud the exact simulation of diffusion processes. The former relates to auxiliary variable\ud methods,... View more
  • References (50)
    50 references, page 1 of 5

    At-Sahalia, Y. (2006). Likelihood inference for di usions: a survey. In Frontiers in statistics, pages 369{405. Imp. Coll. Press, London.

    Ait-Sahalia, Y. and Kimmel, R. (2007). Maximum likelihood estimation of stochastic volatility models. Journal of Financial Economics, 83(2):413{452.

    Andrieu, C., Doucet, A., and Holenstein, R. (2008). Particle markov chain monte carlo. submitted.

    Andrieu, C. and Roberts, G. (2009). The pseudo-marginal approach for e cient monte carlo computations. Ann. Statist., 37(2):697{725.

    Beskos, A., Papaspiliopoulos, O., and Roberts, G. O. (2006a). Retrospective exact simulation of di usion sample paths with applications. Bernoulli, 12:1077{1098.

    Beskos, A., Papaspiliopoulos, O., and Roberts, G. O. (2008). A new factorisation of di usion measure and nite sample path constructions. Methodol. Comput. Appl. Probab., 10(1):85{104.

    Beskos, A., Papaspiliopoulos, O., Roberts, G. O., and Fearnhead, P. (2006b). Exact and e cient likelihood{based inference for discretely observed di usions (with Discussion). J. Roy. Statist. Soc. Ser. B, 68(3):333{82.

    Brown, P. E., Karesen, K. F., Roberts, G. O., and Tonellato, S. (2000). Blurgenerated non-separable space-time models. J. R. Stat. Soc. Ser. B Stat. Methodol., 62(4):847{860.

    Carpenter, J., Cli ord, P., and Fearnhead, P. (1999). An improved particle lter for non-linear problems. IEE proceedings-Radar, Sonar and Navigation, 146:2{7.

    Chopin, N. (2004). Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. The Annals of Statistics, 32:2385{2411.

  • Metrics
Share - Bookmark