Wheel-rail creep force model for predicting water induced low adhesion phenomena

Article English OPEN
Trummer, G.; Buckley-Johnstone, L.E.; Voltr, P.; Meierhofer, A.; Lewis, R.; Six, K.;
  • Publisher: Elsevier

A computationally efficient engineering model to predict adhesion in rolling contact in the presence of water is presented which may be implemented in multibody dynamics software or in braking models to study train performance and braking strategies. This model has been... View more
  • References (12)
    12 references, page 1 of 2

    U. Olofsson & K. Sundvall, Influence of leaf, humidity and applied lubrication on friction in the wheel-rail contact: pin-on-disc experiments, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2004, 218, 235-242

    O. Arias-Cuevas, Z. Li, R. Lewis, E.A. Gallardo-Hernandez, Laboratory Investigation of some Sanding Parameters to Improve the Adhesion in Leaf Contaminated Wheel-Rail Contacts, Journal of Rail and Rapid Transit, Proceedings of the IMechE Part F, 2010, Vol. 224, pp 139-157 Z. Li, O. Arias-Cuevas, R. Lewis, E.A. Gallardo-Hernández, Rolling-Sliding Laboratory Tests of Friction Modifiers in Leaf Contaminated Wheel-Rail Contacts, Tribology Letters, 2009, Vol. 33, No. 2, pp 97-109 E.A. Gallardo-Hernandez, R. Lewis, Twin Disc Assessment of Wheel/Rail Adhesion, Wear, 2008, Vol. 265, pp 1309- 1316

    B.T. White, J. Fisk, M.D. Evans, A.D. Arnall, T. Armitage, D.I. Fletcher, R. Nilsson, U. Olofsson, R. Lewis, A Study into the Effect of the Presence of Moisture at the Wheel/Rail Interface during Dew and Damp Conditions, submitted to Journal of Rail and Rapid Transit, Proceedings of the IMechE Part F, 2016.

    T. M. Beagley & C. Pritchard, Wheel/Rail Adhesion -- The Overriding Influence of Water, Wear, 1975, 35, 299-313 G. W. Stachowiak & A. W. Batchelor, Engineering Tribology, Butterworth-Heinemann, 2006 C. Tomberger, Der Rad-Schiene Kraftschluss unter Berücksichtigung von Temperatur, fluiden Zwischenschichten und mikroskopischer Oberflächenrauheit, Technische Universität Graz, 2009 O. Polach, Creep forces in simulations of traction vehicles running on adhesion limit, Wear, Elsevier, 2005, 258, 992- 1000

    J. J. Kalker, On the Rolling Contact of Two Elastic Bodies in the Prescence of Dry Friction, Delft University of Technology, 1967

    E. A. Vollebregt, Numerical modeling of measured railway creep versus creep-force curves with CONTACT, Wear, 2014, 314, 87-95

    J. J. Kalker, A Fast Algorithm for the Simplified Theory of Rolling Contact, Vehicle System Dynamics, 1982, 11, 1-13 M. Spiryagin, O. Polach & C. Cole, Creep force modelling for rail traction vehicles based on the Fastsim algorithm, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 2013, 51, 1765-1783 O. Polach, A fast wheel-rail forces calculation computer code Proc. of the 16th IAVSD Symposium, Pretoria, August 1999, Vehicle System Dynamics Supplement, 1999, 33, 728-739

    T. M. Beagley, The Rheological Properties of Solid Rail Contaminants and their Effect on Wheel/Rail Adhesion, Proceedings of the Institution of Mechanical Engineers, 1976, 190, 419-428

    H. Chen, T. Ban, M. Ishida & T. Nakahara, Adhesion between rail/wheel under water lubricated contact, Wear, 2002, 253, 75-81

    H. Chen, M. Ishida & T. Nakahara, Analysis of adhesion under wet conditions for three-dimensional contact considering surface roughness, Wear , 2005, 258, 1209- 1216

  • Metrics
Share - Bookmark