High precision multifractal analysis in the 3D Anderson model of localisation

0044 English OPEN
Vasquez, Louella J.;
  • Subject: QA | QC

This work presents a large scale multifractal analysis of the electronic state\ud in the vicinity of the localisation-delocalisation transition in the three-dimensional\ud Anderson model of localisation using high-precision data and very large system\ud sizes of up to L... View more
  • References (23)
    23 references, page 1 of 3

    7.1 The 95% confidence intervals of the critical exponent ν and the critical disorder Wc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 2.1 Schematic profile of the mass exponents and generalized fractal dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Pictorial representation of the general features of the multifractal spectrum at criticality. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1 Singularity spectrum obtained using box-size scaling of the typical average of Pq for system size L = 240 with 95 states. . . . . . . . . . 28 3.2 Mass exponents (a) and generalized fractal dimensions (b) obtained using box-size scaling of the typical average of Pq for L = 240 considering 95 states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 Singularity spectrum obtained using box-size scaling of the typical average of Pq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 • “Optimisation of multifractal analysis using box-size scaling”, A. Rodriguez, L. J. Vasquez, R. A. Ro¨mer, Eur. Phys. J. B 67, 7782 (2009) • “Multifractal analysis with the probability density function at the three-dimensional Anderson transition”, A. Rodriguez, L. J. Vasquez, R. A. Ro¨mer, Phys. Rev. Lett. 102, 106406-4 (2009).

    • “Scaling law and critical exponent for α0 at the 3D Anderson transition”, L. J. Vasquez, K. Slevin, A. Rodriguez, R. A. Ro¨mer, Ann. Phys. (Berlin) 18, 901-904 (2009) • “Finite size scaling from wavefunction amplitudes and multifractal exponents at the 3D Anderson transition”, A. Rodriguez, L. J. Vasquez, K. Slevin, R. A. Ro¨mer, under review in Phys. Rev. Lett. 2010

    [30] J. Feder. Fractals. Plenum Press, New York, 1988.

    [31] K.J. Falconer. The geometry of fractal sets. Cambridge University Press, 1985.

    [32] T. Nakayama and K. Yakubo. Fractal Concepts in Condensed Matter Physics, volume 140 of Springer Series in Solid State Sciences. Springer, 2003.

    [33] A. B. Chabra and R. V. Jensen. Direct determination of the f (α) singularity spectrum. Phys. Rev. Lett., 62:1327-1330, 1989.

    [34] H. Aoki. Critical behaviour of extended states in disordered systems. J. Phys. C, 16:L205-208, 1983.

    [35] H. Aoki. Fractal dimensionality of wave functions at the mobility edge: Quantum fractal in the Landau levels. Phys. Rev. B, 33:7310-7313, 1986.

    [36] M. Schreiber and H. Grussbach. Multifractal wave functions at the Anderson transition. Phys. Rev. Lett., 67:607-610, 1991.

    [37] V. I. Fal'ko and K. B. Efetov. Multifractality: Generic property of eigenstates of 2d disordered metals. Europhys. Lett., 32:627, 1995.

  • Metrics
Share - Bookmark