publication . Article . 2017

Laboratory tests of catastrophic disruption of rotating bodies

A.J.W. Morris; M.J. Burchell;
Open Access English
  • Published: 26 May 2017
  • Publisher: Academic Press Inc
  • Country: United Kingdom
Abstract
Abstract The results of catastrophic disruption experiments on static and rotating targets are reported. The experiments used cement spheres of diameter 10 cm as the targets. Impacts were by mm sized stainless steel spheres at speeds of between 1 and 7.75 km s−1. Energy densities (Q) in the targets ranged from 7 to 2613 J kg−1. The experiments covered both the cratering and catastrophic disruption regimes. For static, i.e. non-rotating targets the critical energy density for disruption (Q*, the value of Q when the largest surviving target fragment has a mass equal to one half of the pre-impact target mass) was Q* = 1447 ± 90 J kg−1. For rotating targets (median ...
Subjects
free text keywords: QB651
Related Organizations
36 references, page 1 of 3

Ballouz, R.L., Richardson, D., Michel, P., Schwartz, S., Yu, Y., 2014. Rotation-dependent catastrophic disruption of gravitational aggregates. Astrophys. J. 789, 158-169.

Ballouz, R.L., Richardson, D.C., Michel, P., Schwartz, S.R., Yu, Y., 2015. Numerical simulations of collisional disruption of rotating gravitational aggregates: dependence on material properties. Planet. Space Sci. 107, 29-35.

Benz, W., Asphaug, E., 1999. Catastrophic disruption revisited. Icarus 142, 5-20. [OpenAIRE]

Binzel, R.P., Bus, S.J., Burbine, T.H., Sunshine, J.M., 1996. Spectral properties of near-Earth asteroids: evidence for sources of ordinary chondrite meteorites. Science 273, 946-948. [OpenAIRE]

Bottke, W.F., Nolan, M.C., Greenberg, R., Kolvoord, R.A., 1994. Velocity distributions among colliding asteroids. Icarus 107, 255-268.

Bottke Jr., W.F., Vokrouhlicky, D., Rubincam, D.P., Nesvorný, D., 2006. The Yarkovsky and YORP Effects: implications for Asteroid Dynamics. Ann. Rev. Earth Planet. Sci. 34, 157-191. [OpenAIRE]

Brandt, A.M., 1998. Optimisation Methods for Material Design of Cement-Based Composites. Pub. CRC Press, p. 120. Rev. English Ed edition. 328 pages, ISBN-13: 978-0419217909.

Burchell, M.J., Cole, M.J., McDonnell, J.A.M., Zarnecki, J.C., 1999. Hypervelocity impact studies using the 2 MV Van de Graaff dust accelerator and two stage light gas gun of the University of Kent at Canterbury. Meas. Sci. Tech. 10, 41-50. [OpenAIRE]

Cellino, A., Dell'Oro, A., Tedesco, E.F., 2009. Asteroid families: current situation. Planet. Space Sci. 57, 173-182.

Cotto-Figueroa, D., Asphaug, E., Garvie, L.A.J., Rai, A., Johnston, J., Borkowski, L., Datta, S., Chattopadhyay, A., Morris, M.A., 2016. Scale-dependent measurements of meteorite strength: implications for asteroid fragmentation. Icarus 277, 73-77. [OpenAIRE]

Davis, D.R., Ryan, E.V., 1990. On collisional disruption: experimental results and scaling laws. Icarus 83, 156-182.

Deller, J.F., Lowry, S.C., Snodgrass, C., Price, M.C., Sierks, H., 2016. A new approach to modelling impacts on rubble pile asteroid simulants. Mon. Not. R. Astron. Soc. 455, 3752-3762. [OpenAIRE]

Durda, D.A., Greenberg, R., Jedicke, R., 1998. Collisional models and scaling laws: a new interpretation of the shape of the main-belt asteroid size distribution. Icarus 135, 431-440.

Durda, D.D., Bottke Jr., W.F., Nesvorný, D., Enke, B.L., Merline, W.J., Asphaug, E., Richardson, D.C., 2007. Size-frequency distributions of fragments from SPH/N-body simulations of asteroid impacts: comparison with observed asteroid families. Icarus 186, 498-516.

Durda, D.D., Campo Bagatin, A., Alemañ, R.A, Flynn, G.J., Strait, M.M., Clayton, A.N., Patmore, E.B., 2015. The shapes of fragments from catastrophic disruption events: effects of target shape and impact speed. Planet. Space Sci. 107, 77-83. [OpenAIRE]

36 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue