Categorical and geometric aspects of noncommutative algebras : mutations, tails and perversities

0044 English OPEN
Vitoria, Jorge;
  • Subject: QA

This thesis concerns some interactions between algebraic geometry and noncommutative\ud algebra in a categorical language. This interplay allows noncommutative\ud constructions of geometric motivation and we explore their structure.\ud In chapters 1 and 2 we survey the ... View more
  • References (20)
    20 references, page 1 of 2

    Chapter 2 Preliminaries 11 2.1 Derived equivalences . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 t-structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Noncommutative projective geometry . . . . . . . . . . . . . . . 25 Chapter 3 Mutations of QP's and derived equivalences 31 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 Mutation and Seiberg Duality . . . . . . . . . . . . . . . . . . . 34 3.3 Seiberg duality for good potentials . . . . . . . . . . . . . . . . 41 3.4 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5 3-Calabi-Yau algebras . . . . . . . . . . . . . . . . . . . . . . . 56 [AB10] D. Arinkin and R. Bezrukavnikov. arxiv0902.0349v2, 2010.

    [ATVdB90] M. Artin, J. Tate, and M. Van den Bergh. Some algebras associated to automorphisms of elliptic curves. The Grothendieck Festschrift, Vol. I, Progr. Math., 86:33-85, 1990.

    [ATVdB91] M. Artin, J. Tate, and M. Van den Bergh. Modules over regular algebras of dimension 3. Invent. Math., 106(1):335-388, 1991.

    [AVdB90] M. Artin and M. Van den Bergh. Twisted homogeneous coordinate rings. J. Algebra, 133(2):249-271, 1990.

    [AZ94] M. Artin and J. J. Zhang. Noncommutative projective schemes. Adv. Math., 109(2):228-287, 1994.

    [Bae88] Dagmar Baer. Tilting sheaves in representation theory of algebras. Manuscripta Math., 60(3):323-347, 1988.

    [BKR01] T. Bridgeland, A. King, and M. Reid. The McKay correspondence as an equivalence of derived categories. J. Amer. Math. Soc., 14(3):535-554, 2001.

    [BMR+06] A.B. Buan, R. Marsh, M. Reineke, I. Reiten, and G. Todorov. Tilting theory and cluster combinatorics. Adv. Math., 204(2):572-618, 2006.

    [FO89] B.L. Feigin and A.V. Odesskii. Sklyanin elliptic algebras. Funct. Anal. App., 23(3):207-214, 1989.

    [FZ02] S. Fomin and A. Zelevinsky. Cluster algebras I: Foundations. J. Amer. Math. Soc., 15(2):497-529 (electronic), 2002.

  • Metrics
Share - Bookmark