publication . Article . 2015

The Stability Analyses of the Mathematical Models of Hepatitis C Virus Infection

Chong, Maureen Siew Fang; Shahrill, Masitah; Crossley, Laurie; Madzvamuse, Anotida;
Open Access
  • Published: 19 Jan 2015 Journal: Modern Applied Science, volume 9 (issn: 1913-1844, eissn: 1913-1852, Copyright policy)
  • Publisher: Canadian Center of Science and Education
  • Country: United Kingdom
There are two mathematical models of Hepatitis C virus (HCV) being discussed; the original model of HCV viral dynamics (Neumann et al., 1998) and its extended model (Dahari et al., 2007). The key aspects of the mathematical models have provided resources for analysing the stability of the uninfected and the infected steady states, in evaluating the antiviral effectiveness of therapy and for estimating the ranges of values of the parameters for clinical treatment. The original model is considered to be a deterministic model because of the predictive nature of the antiviral therapy within the constant target cells. Numerical simulations are carried out in the exte...
free text keywords: Clinical treatment, Deterministic system, Mathematics, Hepatitis C virus, medicine.disease_cause, medicine, Viral dynamics, Mathematical optimization, Mathematical model, Antiviral therapy, Virology, QA299
Related Organizations
21 references, page 1 of 2

Avendaño, R., Esteva, L., Flores J. A., Fuentes Allen, J. L., Gómez, G., & López-Estrada, J. A. (2002). Mathematical model for the dynamic of hepatitis C. Journal of Theoretical Medicine, 4, 109-118. [OpenAIRE]

Bisceglie, D. A. M. (1998). Hepatitis

Dahari, H., Lo, A., Ribeiro, R. M., & Perelson, A. S. (2007). Modeling hepatitis C virus dynamics: Liver regeneration and critical drug efficacy. Journal of Theoretical Biology, 247, 371-381.

Dahari, H., Major, M., Zhang, X., Mihalik, K., Rice, C. M., Perelson, A. S., Feinstone, S. M., & Neumann, A. U. (2005). Mathematical modeling of primary hepatitis C infection: Noncytolytic clearance and early blockage [OpenAIRE]

Firpi, R. J., & Nelson, D. R. (2007). Current and future hepatitis C therapies. Archives of Medical Research, 38, 678-690.

Guedj, J., & Neumann, A. U. (2010). Understanding hepatitis C viral dynamics with direct-acting antiviral agents due to the interplay between intracellular replication and cellular infection dynamics. Journal of Theoretical Biology, 267(3), 330-340. [OpenAIRE]

Guedj, J., Dahari, H., Rong, L., Sansone, N. D., Nettles, R. E., Cotler, S. J., Layden, T. J., Uprichard, S. L, & Perelson, A. S. (2013). Modelling shows that the NS5A inhibitor daclatasvir has two modes of action and yields a shorter estimate of the hepatitis C virus half-life. Proceedings of the National Academy of Sciences of the United States of America, 110(10), 3991-3996.

Guedj, J., Rong, L., Dahari, H., & Perelson, A. S. (2010). A perspective on modelling hepatitis C virus infection. Journal of Viral Hepatitis, 17, 825-833. J., & Kocak, H. (1991). [OpenAIRE] M. (2001). Elements of Mathematical

Layden, T. J., Mika, B., & Wiley, T. (2000). Hepatitis C kinetics: Mathematical modeling of viral response to therapy. Seminars in Liver Disease, 20(2), 173-183.

Maplesoft. (2014). Retrieved from

Mihm, U., Hermann, E., Sarrazin, C., & Zeuzem, S. (2006). Review article: predicting response in hepatitis C virus therapy. Alimentary Pharmacology & Therapeutics, 23(8), 1043-1054. [OpenAIRE]

Murray, J. D. (2002). Mathematical Biology I: An Introduction (3rd ed). Springer.

Neumann, A. U., Lam, N. P., Dahari, H., Gretch, D. R., Wiley, T. E., Layden, T. J., & Perelson, A. S. (1998). Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-α therapy. Science, 282, 103-107.

21 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue