publication . Article . 2016

Charge collection and field profile studies of heavily irradiated strip sensors for the ATLAS inner tracker upgrade

Hara, K.; Allport, P.P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J.P.; Wilson, J.A.; Kierstead, J.; ...
Open Access English
  • Published: 21 Sep 2016
  • Publisher: Elsevier
  • Country: United Kingdom
Abstract
The ATLAS group has evaluated the charge collection in silicon microstrip sensors irradiated up to a fluence of 1×1016 neq/cm2, exceeding the maximum of 1.6×1015 neq/cm2 expected for the strip tracker during the high luminosity LHC (HL-LHC) period including a safety factor of 2. The ATLAS12, n+-on-p type sensor, which is fabricated by Hamamatsu Photonics (HPK) on float zone (FZ) substrates, is the latest barrel sensor prototype. The charge collection from the irradiated 1×1 cm2 barrel test sensors has been evaluated systematically using penetrating β-rays and an Alibava readout system. The data obtained at different measurement sites are compared with each other...
Subjects
arXiv: Physics::Instrumentation and Detectors
Funded by
RCUK| ATLAS SCT Upgrade Module Production
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: ST/M006409/1
  • Funding stream: STFC
,
EC| AIDA
Project
AIDA
Advanced European Infrastructures for Detectors at Accelerators
  • Funder: European Commission (EC)
  • Project Code: 262025
  • Funding stream: FP7 | SP4 | INFRA
,
EC| AIDA-2020
Project
AIDA-2020
Advanced European Infrastructures for Detectors at Accelerators
  • Funder: European Commission (EC)
  • Project Code: 654168
  • Funding stream: H2020 | RIA
24 references, page 1 of 2

[1] ATLAS Collaboration, J. Instrum. 3 (2008) S08003.

[2] S. McMahon, 2015, Presented at this symposium.

[3] M. Backhous, 2015, Presented at this symposium.

[4] I.-M. Gregor, 2015, Presented at this symposium.

[5] K. Hara, Y. Ikegami, Nucl. Instrum. Methods Phys. Res. A 731 (2013) 242.

[6] ATLAS Collaboration, CERN-2012-022, LHCC-1-023 (2012).

[7] I. Dawson, P. Miyagawa, ATL-GEN-2014-003 (2014).

[8] A. Vasilescu (INPE Bucharest), G. Lindstroem (University of Hamburg), Displacement damage in silicon, on-line compilation, 2000. 〈http://rd50.web. cern.ch/RD50/NIEL/default.html〉.

[9] I. Dawson, P. Miyagawa (U. Sheffield), 2015 August, Private Communication.

[10] K. Hara, et al., Nucl. Instrum. Methods Phys. Res. 636 (2011) S83.

[11] Y. Unno, et al., Nucl. Instrum. Methods Phys. Res. A 636 (2011) S24.

[12] Y. Unno, et al., Nucl. Instrum. Methods Phys. Res. A 765 (2014) 80.

[13] Alibava Systems, 2015, Homepage〈http://www.alibavasystems.com/〉.

[14] G. Kramberger, et al., IEEE Trans. Nucl. Sci. NS 57 (2010) 2294.

[15] L. Snoj, G. Žerovnik, A. Trikov, Appl. Radiat. Isot. 70 (2012) 483.

24 references, page 1 of 2
Any information missing or wrong?Report an Issue