Experimental evolution of herbicide resistance in chlamydomonas reinhardtii

Doctoral thesis English OPEN
Lagator, Mato
  • Subject: QK

Our\ud understanding\ud of\ud the\ud evolutionary\ud dynamics\ud of\ud selection\ud for\ud herbicide\ud resistance\ud is\ud limited\ud by\ud the\ud time\ud and\ud space\ud required\ud to\ud conduct\ud meaningful\ud selection\ud experiments\ud in\ud higher\ud plants.\ud This\ud constrains\ud the\ud study\ud of\ud the\ud dynamics\ud of\ud resistance\ud evolution\ud predominantly\ud to\ud mathematical\ud models.\ud The\ud primary\ud goal\ud of\ud this\ud thesis\ud was\ud to\ud overcome\ud these\ud limitations,\ud and\ud to\ud study\ud the\ud evolutionary\ud phenomena\ud underpinning\ud several\ud management\ud strategies.\ud To\ud do\ud so,\ud a\ud series\ud of\ud experimental\ud evolution\ud studies\ud were\ud conducted\ud using\ud Chlamydomonas\ud reinhardtii,\ud a\ud single-­‐cell\ud green\ud chlorophyte\ud susceptible\ud to\ud a\ud range\ud of\ud commercial\ud herbicides.\ud In\ud particular,\ud this\ud thesis\ud explored\ud the\ud impact\ud of\ud herbicide\ud sequences,\ud rotations\ud and\ud mixtures,\ud as\ud well\ud the\ud impact\ud of\ud herbicide\ud dose,\ud on\ud evolution\ud of\ud resistance.\ud Applying\ud herbicides\ud in\ud sequence\ud allowed\ud the\ud study\ud of\ud the\ud impact\ud of\ud environmental\ud perturbation\ud on\ud the\ud dynamics\ud of\ud resistance\ud and\ud the\ud associated\ud fitness\ud costs,\ud finding\ud more\ud rapid\ud selection\ud for\ud resistance\ud to\ud a\ud second\ud and\ud third\ud mode\ud of\ud action\ud in\ud some\ud populations.\ud Cycling\ud between\ud herbicides\ud creates\ud conditions\ud of\ud temporal\ud environmental\ud heterogeneity,\ud the\ud outcomes\ud of\ud which\ud are\ud not\ud easily\ud predictable\ud as\ud resistance\ud was\ud slowed\ud down\ud in\ud some\ud cycling\ud regimes,\ud while\ud in\ud others\ud it\ud accelerated\ud the\ud evolution\ud of\ud resistance\ud or\ud gave\ud rise\ud to\ud cross-­‐resistance.\ud Herbicide\ud mixtures\ud are\ud a\ud management\ud strategy\ud relying\ud on\ud increases\ud in\ud environmental\ud complexity\ud to\ud provide\ud better\ud control\ud of\ud resistance.\ud The\ud results\ud presented\ud show\ud that\ud mixtures\ud were\ud effective\ud at\ud slowing\ud the\ud evolution\ud of\ud resistance\ud when\ud all\ud mixture\ud components\ud were\ud used\ud at\ud fully\ud effective\ud doses,\ud while\ud low\ud doses\ud of\ud mixtures\ud accelerated\ud resistance\ud evolution\ud and\ud led\ud to\ud more\ud cross-­‐resistance.\ud Finally,\ud modifications\ud of\ud the\ud applied\ud herbicide\ud dose\ud allowed\ud the\ud study\ud of\ud local\ud adaptation\ud along\ud an\ud environmental\ud gradient,\ud where\ud the\ud differences\ud in\ud outcomes\ud based\ud on\ud the\ud specific\ud herbicides\ud used\ud were\ud again\ud evident.\ud Overall,\ud the\ud work\ud presented\ud here\ud uses\ud applied\ud scenarios\ud to\ud study\ud the\ud underlying\ud evolutionary\ud phenomena,\ud in\ud order\ud to\ud feed\ud back\ud into\ud the\ud applied\ud thinking.
  • References (78)
    78 references, page 1 of 8

    Bergstrom, C. T. & Feldgarden, M. 2007. The Ecology and Evolution of Antibiotic-Resistant Bacteria.

    in: Evolution in Health and Disease, eds. S. Stearns, J. Koella, Oxford University Press, UK Bergstrom, C. T., Lo, M. & Lipsitch, M. 2004. Ecological Theory Suggests that Antimicrobial Cycling Will Not Redude Antimicrobial Resistance in Hospitals. Proceedings of Natural Academy of Sciences, 101, 13285-13290.

    Birch, C. P. D. & Shaw, M. W. 1997. When can Reduced Doses and Pesticide Mixtures Delay the Buildup of Pesticide Resistance? A Mathematical Model. Journal of Applied Ecology, 34, 1032-1042.

    Birky, C. W. 1995. Uniparental Inheritance of Mitochondrial and Chloroplast Genes: Mechanisms and Evolution. Proceedings of Natural Academy of Sciences, 92, 11331-11338.

    Blackshaw, R. E., O'Donovan, J. T., Harker, N. K., Clayton, G. W. & Stougaard, R. N. 2006. Reduced Herbicide Doses in Field Crops: A Review. Weed Biology and Management, 6, 10-17.

    Blumel, S. & Gross, M. 2001. Effect of Pesticide Mixtures on the Predatory Mite Phytoseiulus persimilis A.H. (Acarina, Phytoseiidae) in the Laboratory. Journal of Applied Entomology, 125, 201-205.

    Bonhoeffer, S., Lipsitch, M. & Levin, B. 1997. Evaluating Treatment Protocols to Prevent Antibiotic Resistance. Proceedings of Natural Academy of Sciences, 94, 12106-12111.

    Boote, K., Jones, J., Mishoe, J. & Berger, R. 1983. Coupling Pests to Crop Growth Simulators to Predict Yield Reductions. Phytopathology, 72, 1581-1587.

    Booth, I. R. 2002. Stress and the single cell: Intrapopulation Diversity is a Mechanism to Ensure Survival Upon Exposure to Stress. International Journal of Food Microbiology, 78, 19-30.

    Bradshaw, L. D., Padgette, S. R., Kimball, S. L. & Wells, B. H. 1997. Perspectives on Glyphosate Resistance. Weed Technology, 11, 189-198.

  • Related Research Results (3)
  • Metrics
    No metrics available
Share - Bookmark