Microphysical properties of cold frontal rainbands

Article English OPEN
Crosier, J. ; Choularton, T. W. ; Westbrook, C. D. ; Blyth, A. M. ; Bower, K. N. ; Connolly, P. J. ; Dearden, C. ; Gallagher, M. W. ; Cui, Z. ; Nicol, J. C. (2014)
  • Publisher: Royal Meteorological Society
  • Related identifiers: doi: 10.1002/(ISSN)1477-870X, doi: 10.1002/qj.2206
  • Subject: Precipitation | Radar | Rainband | Cold front | Ice multiplication | in situ microphysics | Atmospheric Science | /dk/atira/pure/subjectarea/asjc/1900/1902

Observations have been obtained within an intense (precipitation rates > 50 mm h-1) narrow cold-frontal rainband (NCFR) embedded within a broader region of stratiform precipitation. In situ data were obtained from an aircraft which flew near a steerable dual-polarisation Doppler radar. The observations were obtained to characterise the microphysical properties of cold frontal clouds, with an emphasis on ice and precipitation formation and development. Primary ice nucleation near cloud top (-55°C) appeared to be enhanced by convective features. However, ice multiplication led to the largest ice particle number concentrations being observed at relatively high temperatures (> -10°C). The multiplication process (most likely rime splintering) occurs when stratiform precipitation interacts with supercooled water generated in the NCFR. Graupel was notably absent in the data obtained. Ice multiplication processes are known to have a strong impact in glaciating isolated convective clouds, but have rarely been studied within larger organised convective systems such as NCFRs. Secondary ice particles will impact on precipitation formation and cloud dynamics due to their relatively small size and high number density. Further modelling studies are required to quantify the effects of rime splintering on precipitation and dynamics in frontal rainbands. Available parametrizations used to diagnose the particle size distributions do not account for the influence of ice multiplication. This deficiency in parametrizations is likely to be important in some cases for modelling the evolution of cloud systems and the precipitation formation. Ice multiplication has significant impact on artefact removal from in situ particle imaging probes. © 2013 The Authors.
  • References (42)
    42 references, page 1 of 5

    Agusti-Panareda A, Gray SL, Belcher SE. 2009. On the dependence of boundarylayer ventilation on frontal type. J. Geophys. Res. 114: D05305, DOI: 10.1029/2008JD010694.

    Bailey MP, Hallett J. 2009. A comprehensive habit diagram for atmospheric ice crystals: confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci. 66: 2888-2899, DOI: 10.1175/2009JAS2883.1.

    Baumgardner D, Jonsson H, Dawson W, O'Connor D, Newton R. 2001. The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations. Atmos. Res. 59: 251-264, DOI: 10.1016/S0169- 8095(01)00119-3.

    Bower KN, Moss SJ, Johnson DW, Choularton TW, Latham J, Brown PRA, Blyth AM, Cardwell J. 1996. A parametrization of the ice water content observed in frontal and convective clouds. Q. J. R. Meteorol. Soc. 122: 1815-1844, DOI: 10.1002/qj.49712253605.

    Brown PRA, Francis PN. 1995. Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol. 12: 410-414, DOI: 10.1175/1520-0426(1995)012<0410:IMOTIW> 2.0.CO;2.

    Browning KA. 1986. Conceptual models of precipitation systems. Weather and Forecasting 1: 23-41, DOI: 10.1175/1520-0434(1986)001<0023:CMOPS> 2.0.CO;2.

    Browning KA, Reynolds R. 1994. Diagnostic study of a narrow cold-frontal rainband and severe winds associated with a stratospheric intrusion. Q. J. R. Meteorol. Soc. 120: 235-257, DOI: 10.1002/qj.49712051602.

    Browning KA, Roberts NM. 1996. Variation of frontal and precipitation structure along a cold front. Q. J. R. Meteorol. Soc. 122: 1845-1872, DOI: 10.1002/qj.49712253606.

    Chapman D, Browning KA. 1998. Use of wind-shear displays for Doppler radar data. Bull. Am. Meteorol. Soc. 79: 2685-2691.

    Crawford I, Bower KN, Choularton TW, Dearden C, Crosier J, Westbrook C, Capes G, Coe H, Connolly PJ, Dorsey JR, Gallagher MW, Williams P, Trembath J, Cui Z, Blyth AM. 2012. Ice formation and development in aged, wintertime cumulus over the UK: observations and modelling. Atmos. Chem. Phys. 12: 4963-4985, DOI: 10.5194/acp-12-4963-2012.

  • Similar Research Results (1)
  • Metrics
    No metrics available
Share - Bookmark