Observing gravitational-wave transient GW150914 with minimal assumptions

Article, Preprint English OPEN
Abbott, B. P. ; Abbott, R. ; Abbott, T. D. ; Abernathy, M. R. ; Acernese, F. ; Ackley, K. ; Adams, C. ; Adams, T. ; Addesso, P. ; Adhikari, R. X. ; Adya, V. B. ; Affeldt, C. ; Agathos, M. ; Agatsuma, K. ; Aggarwal, N. ; Aguiar, O. D. ; Aiello, L. ; Ain, A. ; Ajith, P. ; Allen, B. ; Allocca, A. ; Altin, P. A. ; Anderson, S. B. ; Anderson, W. G. ; Arai, K. ; Araya, M. C. ; Arceneaux, C. C. ; Areeda, J. S. ; Arnaud, N. ; Arun, K. G. ... view all 968 authors (2016)
  • Publisher: American Physical Society
  • Related identifiers: doi: 10.1103/PhysRevD.93.122004/apsxml, doi: 10.1103/PhysRevD.93.122004
  • Subject: QB | QC | Astrophysics - Instrumentation and Methods for Astrophysics | Astrophysics - High Energy Astrophysical Phenomena | Nuclear and High Energy Physics
    arxiv: General Relativity and Quantum Cosmology | Astrophysics::High Energy Astrophysical Phenomena | Astrophysics::Cosmology and Extragalactic Astrophysics

The gravitational-wave signal GW150914 was first identified on Sept 14 2015 by searches for short-duration gravitational-wave transients. These searches identify time-correlated transients in multiple detectors with minimal assumptions aboutthe signal morphology, allowing them to be sensitive to gravitational waves emitted by a wide range of sources including binary black-hole mergers. Over the observational period from September 12th to October 20th 2015, these transient searches were sensitive to binary black-hole mergers similar to GW150914 to an average distance of $\sim 600$ Mpc. In this paper, we describe the analyses that first detected GW150914 as well as the parameter estimation and waveform reconstruction techniques that initially identified GW150914 as the merger of two black holes. We find that the reconstructed waveform is consistent with the signal from a binary black-hole merger with a chirp mass of $\sim 30 \, M_\odot$ and a total mass before merger of $\sim 70 \, M_\odot$ in the detector frame.
  • References (60)
    60 references, page 1 of 6

    [1] J. Aasi et al., Advanced LIGO, Classical Quantum Gravity 32, 074001 (2015).

    [2] B. P. Abbott et al., GW150914: The Advanced LIGO Detectors in the Era of First Discoveries, Phys. Rev. Lett. 116, 131103 (2016).

    [3] A. Einstein, Näherungsweise integration der feldgleichungen der gravitation, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin) 1, 688 (1916).

    [4] A. Einstein, Über gravitationswellen, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin), 1, 154 (1918).

    [5] H. Luck et al., The upgrade of GEO600, J. Phys. Conf. Ser. 228, 012012 (2010).

    [6] F. Acernese et al., Advanced Virgo: A second-generation interferometric gravitational wave detector, Classical Quantum Gravity 32, 024001 (2015).

    [7] Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto, Interferometer design of the KAGRA gravitational wave detector, Phys. Rev. D 88, 043007 (2013).

    [8] B. P. Abbott et al., Prospects for observing and localizing gravitational-wave transients with Advanced LIGO and Advanced Virgo, Living Rev. Relativ. 19, 1 (2016).

    [9] N. Andersson et al., The transient gravitational-wave sky, Classical Quantum Gravity 30, 193002 (2013).

    [10] C. L. Fryer and K. C. B. New, Gravitational waves from gravitational collapse, Living Rev. Relativity 14, 1 (2011).

  • Metrics
    No metrics available
Share - Bookmark