37 references, page 1 of 3

[1] D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2002) 1749-1779. [OpenAIRE]

[2] I. Babuˇska, M. Suri, The p and h-p versions of the finite element method, basic principles and properties, SIAM Rev. 36 (1994) 578-632.

[3] A.H. Barnett, T. Betcke, An exponentially convergent nonpolynomial finite element method for time-harmonic scattering from polygons, SIAM J. Sci. Comput. 32 (2010) 1417-1441. [OpenAIRE]

[4] S.C. Brenner, L.R. Scott, Mathematical theory of finite element methods, 3rd ed., Texts Appl. Math., Springer-Verlag, New York, 2007.

[5] A. Buffa, P. Monk, Error estimates for the ultra weak variational formulation of the Helmholtz equation, M2AN, Math. Model. Numer. Anal. 42 (2008) 925-940.

[6] P. Castillo, B. Cockburn, I. Perugia, D. Scho¨tzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal. 38 (2000) 1676-1706. [OpenAIRE]

[7] O. Cessenat, B. Despr´es, Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz equation, SIAM J. Numer. Anal. 35 (1998) 255-299. [OpenAIRE]

[8] O. Cessenat, B. Despr´es, Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation, J. Comput. Acoust. 11 (2003) 227-238.

[9] S.N. Chandler-Wilde, P. Monk, Wave-number-explicit bounds in timeharmonic scattering, SIAM J. Math. Anal. 39 (2008) 1428-1455.

[10] D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, volume 93 of Applied Mathematical Sciences, Springer, Heidelberg, 2nd edition, 1998.

[11] P. Cummings, X. Feng, Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations, Math. Models Methods Appl. Sci. 16 (2006) 139-160.

[12] S. Esterhazy, J. Melenk, On stability of discretizations of the Helmholtz equation, in: I. Graham, T. Hou, O. Lakkis, R. Scheichl (Eds.), Numerical Analysis of Multiscale Problems, volume 83 of Lecture Notes in Computational Science and Engineering, Springer Verlag, 2011, pp. 285-324. [OpenAIRE]

[13] X.B. Feng, H.J. Wu, hp-Discontinuous Galerkin methods for the Helmholtz equation with large wave number, Math. Comp. 80 (2011) 1997-2024.

[14] C.J. Gittelson, R. Hiptmair, I. Perugia, Plane wave discontinuous Galerkin methods: analysis of the h-version, M2AN Math. Model. Numer. Anal. 43 (2009) 297-332.

[15] U. Hetmaniuk, Stability estimates for a class of Helmholtz problems, Commun. Math. Sci. 5 (2007) 665-678. [OpenAIRE]

37 references, page 1 of 3