A spectral identity on Jacobi polynomials and its analytic implications

Article English OPEN
Awonusika, Richard Olu; Taheri, Ali;
(2018)

The Jacobi coefficients c`j (; ) (1 j `, ; > 1) are linked to the Maclaurin spectral expansion of the Schwartz kernel of functions of the Laplacian on a compact rank one symmetric space. It is proved that these coefficients can be computed by transforming the even deriv... View more
  • References (18)
    18 references, page 1 of 2

    [1] R.O. Awonusika, A. Taheri, Harmonic Analysis on Symmetric and Locally Symmetric Spaces, In preparation, 2017, (pp. 504+iv).

    [2] R.O. Awonusika, A. Taheri, Spectral Invariants on Compact Symmetric Spaces: From Heat Trace to Functional Determinants, Submitted 2017, (pp. 262+ix).

    [3] D. Bakry, I. Gentil, M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, Grundlehren der Mathematischen Wissenschaften, Vol. 348, Springer, 2008.

    [4] M. Berger, P. Gauduchon, E. Mazet, Le spectre dune variete Riemannienne, Springer, 1971.

    [5] I.S. Gradshtejn, I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, 2007.

    [6] S. Helgason, Eigenspaces of the Laplacian; integral representations and irreducibility, J. Funct. Anal., Vol. 17, 1974, pp. 328-353.

    [7] S. Helgason, Topics in Harmonic Analysis on Homogeneous Spaces, Birkhauser, 1981.

    [8] T.H. Koornwinder, The addition formula for Jacobi polynomials: I Summary of results, Indag. Math., Vol. 34, 1974, pp. 188-191.

    [9] T.H. Koornwinder, A new proof of a Paley-Wiener type theorem for the Jacobi transform, Ark. Matematik, Vol. 13, 1975, pp. 145-159.

    [10] H. McKean, I.M. Singer, Curvature and the eigenvalues of the Laplacian, J. Di . Geom., Vol. 1, 1967, pp. 4369.

  • Similar Research Results (2)
  • Metrics
Share - Bookmark