Piezoelectric response to coherent longitudinal and transverse acoustic phonons in a semiconductor Schottky diode

Article English OPEN
Srikanthreddy, D. ; Glavin, B.A. ; Poyser, Caroline Louise ; Henini, M. ; Lehmann, D. ; Jasiukiewicz, Cz. ; Akimov, Andrey V. ; Kent, A.J. (2017)
  • Publisher: American Physical Society
  • Related identifiers: doi: 10.1103/PhysRevApplied.7.024014
  • Subject:
    arxiv: Condensed Matter::Materials Science | Condensed Matter::Mesoscopic Systems and Quantum Hall Effect

We study the generation of microwave electronic signals by pumping a (311) GaAs Schottky diode with compressive and shear acoustic phonons, generated by femtosecond optical excitation of an Al _lm transducer and mode conversion at the Al-GaAs interface. They propagate through the substrate and arrive at the Schottky device on the opposite surface, where they induce a microwave electronic signal. The arrival time, amplitude and polarity of the signals depend on the phonon mode. A theoretical analysis is made of the polarity of the experimental signals. This includes the piezoelectric and deformation potential mechanisms of electron-phonon interaction in a Schottky contact and shows that the piezoelectric mechanism is dominant for both transverse and longitudinal modes with frequencies below 250 GHz and 70 GHz respectively.
  • References (28)
    28 references, page 1 of 3

    D. Srikanthreddy,1 B. A. Glavin,2 C. L. Poyser,1,* M. Henini,1 D. Lehmann,3 Cz. Jasiukiewicz,4 A. V. Akimov,1 and A. J. Kent1 1School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom 2V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences, Kiev 03028, Ukraine 3Institute for Theoretical Physics, TU Dresden, D-01062 Dresden, Germany 4Faculty of Mathematics and Applied Physics, Rzeszów University of Technology, aleja Powstańców Warszawy 8, PL-35-959 Rzeszów, Poland (Received 25 October 2016; published 13 February 2017)

    [1] Z. L. Wang and J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science 312, 242 (2006).

    [2] J. H. Stotz, R. Hey, P. V. Santos, and K. H. Ploog, Coherent spin transport through dynamic quantum dots, Nat. Mater. 4, 585 (2005).

    [3] M. T. Ong and E. J. Reed, Engineered piezoelectricity in graphene, ACS Nano 6, 1387 (2012).

    [4] C.-K. Sun, J.-C. Liang, and X.-Y. Yu, Coherent Acoustic Phonon Oscillations in Semiconductor Multiple Quantum Wells with Piezoelectric Fields, Phys. Rev. Lett. 84, 179 (2000).

    [5] D. M. Moss, A. V. Akimov, A. J. Kent, B. A. Glavin, M. J. Kappers, J. L. Hollander, M. A. Moram, and C. J. Humphreys, Coherent terahertz acoustic vibrations in polar and semipolar gallium nitride-based superlattices, Appl. Phys. Lett. 94, 011909 (2009).

    [6] O. Matsuda, O. B. Wright, D. H. Hurley, V. E. Gusev, and K. Shimizu, Coherent Shear Phonon Generation and Detection with Ultrashort Optical Pulses, Phys. Rev. Lett. 93, 095501 (2004).

    [7] O. Matsuda, O. B. Wright, D. H. Hurley, V. Gusev, and K. Shimizu, Coherent shear phonon generation and detection with picosecond laser acoustics, Phys. Rev. B 77, 224110 (2008).

    [8] P. M. Walker, A. J. Kent, M. Henini, B. A. Glavin, V. A. Kochelap, and T. L. Linnik, Terahertz acoustic oscillations by stimulated phonon emission in an optically pumped superlattice, Phys. Rev. B 79, 245313 (2009).

    [9] T. Pezeril, P. Ruello, S. Gougeon, N. Chigarev, D. Mounier, J.-M. Breteau, P. Picart, and V. Gusev, Generation and detection of plane coherent shear picosecond acoustic pulses by lasers: Experiment and theory, Phys. Rev. B 75, 174307 (2007).

  • Metrics
    No metrics available
Share - Bookmark