Characterisation of thin films of graphene–surfactant composites produced through a novel semi-automated method

Article English OPEN
Walch, Nik J ; Nabok, Aleksey ; Davis, Frank ; Higson, Séamus P J (2016)
  • Publisher: Beilstein-Institut
  • Journal: Beilstein Journal of Nanotechnology (vol: 7, pp: 209-219)
  • Related identifiers: doi: 10.3762/bjnano.7.19, pmc: PMC4778504
  • Subject: Full Research Paper | ellipsometry | Nanoscience | Nanotechnology | characterization | 1H NMR | graphene | surfactant

Summary In this paper we detail a novel semi-automated method for the production of graphene by sonochemical exfoliation of graphite in the presence of ionic surfactants, e.g., sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). The formation of individual graphene flakes was confirmed by Raman spectroscopy, while the interaction of graphene with surfactants was proven by NMR spectroscopy. The resulting graphene–surfactant composite material formed a stable suspension in water and some organic solvents, such as chloroform. Graphene thin films were then produced using Langmuir–Blodgett (LB) or electrostatic layer-by-layer (LbL) deposition techniques. The composition and morphology of the films produced was studied with SEM/EDX and AFM. The best results in terms of adhesion and surface coverage were achieved using LbL deposition of graphene(−)SDS alternated with polyethyleneimine (PEI). The optical study of graphene thin films deposited on different substrates was carried out using UV–vis absorption spectroscopy and spectroscopic ellipsometry. A particular focus was on studying graphene layers deposited on gold-coated glass using a method of total internal reflection ellipsometry (TIRE) which revealed the enhancement of the surface plasmon resonance in thin gold films by depositing graphene layers.
  • References (24)
    24 references, page 1 of 3

    1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666-669. doi:10.1126/science.1102896

    2. Sharma, B. K.; Ahn, J.-H. Solid-State Electron. 2013, 89, 177-188. doi:10.1016/j.sse.2013.08.007

    3. Torrisi, F.; Hasan, T.; Wu, W.; Sun, Z.; Lombardo, A.; Kulmala, T. S.; Hsieh, G.-W.; Jung, S.; Bonaccorso, F.; Paul, P. J.; Chu, D.; Ferrari, A. C. ACS Nano 2012, 6, 2992-3006. doi:10.1021/nn2044609

    4. Notley, S. M. Langmuir 2012, 28, 14110-14113. doi:10.1021/la302750e

    5. Hummers, W. S., Jr.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi:10.1021/ja01539a017

    6. Walch, N. J.; Davis, F.; Langford, N.; Holmes, J. L.; Collyer, S. D.; Higson, S. P. J. Anal. Chem. 2015, 87, 9273-9279. doi:10.1021/acs.analchem.5b01829

    7. Fan, J.; Shi, Z.; Ge, Y.; Wang, J.; Wang, Y.; Yin, J. J. Mater. Chem. 2012, 22, 13764-13772. doi:10.1039/c2jm31437a

    8. Petty, M. C. Langmuir-Blodgett Films. An introduction; Cambridge University Press: Cambridge, United Kingdom, 1996. doi:10.1017/CBO9780511622519

    9. Nabok, A. Organic and Inorganic Nanostructures; Artech House Publishers: London, United Kingdom, 2005.

    10. Lvov, Y.; Decher, G.; Moehwald, H. Langmuir 1993, 9, 481-486. doi:10.1021/la00026a020

  • Metrics
    No metrics available
Share - Bookmark