publication . Thesis

Can we hear black holes collide?

Harry, Ian William;
Open Access English
  • Country: United Kingdom
Abstract
The focus of this work is the attempt to detect gravitational waves emitted by compact binary coalescences (CBCs) using gravitational wave interferometers. We begin by reviewing the basic theory of gravitational waves and the methods for their detection, focusing on CBCs. We also briefly describe the laser interferometers that are being used to attempt to detect gravitational radiation. We describe in detail the search pipeline that has been used to search for gravitational waves emitted from CBCs in data taken by the LIGO and Virgo detectors. We present the latest results of the all-sky, all-time search and electromagnetically triggered searches. We introduce a...
Subjects
arXiv: General Relativity and Quantum Cosmology
free text keywords: QB
Related Organizations
74 references, page 1 of 5

3.2.4 Frequency domain w a v e fo rm s.......................................................36 3.2.5 Detector response to a compact binary inspiral.......................... 38 3.2.6 Gravitational radiation from a binary neutron star merger . 39 Higher order phase te r m s ............................................................................. 40 Higher order amplitude t e r m s ....................................................................40 Numerical relativ ity .......................................................................................41 Waveform models for a n a ly s e s ...................................................................41

6 Searching for sp in n in g c o m p a c t b in a ry co a lesc en ce s 123 6.1 Spinning compact binary coalescence gravitational waveforms . . .12 5 6.2 Non precessing s y s te m s ..................................................................................127 6.3 The single spin P T F w aveform .................................................................... 129 6.4 Spinning search using P T F waveforms ................................................... 135 6.4.1 Formulating th e P T F detection s t a t i s t i c .....................................135 6.4.2 Physical freedom in th e P T F SNR ...............................................139 6.4.3 P T F w ith no p r e c e s s i o n ...................................................................140 6.4.4 SNR distribution in G aussian n o i s e .............................................. 140 6.4.5 Remaining challenges for the coincidence P T F search . . . .141 6.5 Triggered coherent P T F spinning search ................................................142 6.5.1 SNR distribution in Gaussian n o i s e .............................................. 145 6.6 Identifying where the P T F search is most b e n e f ic ia l............................146 6.7 Search m ethod and example r e s u l t s ..........................................................148 6.8 Discussion and generic spin s y s te m s ..........................................................151

7 A sto c h a stic te m p la te p la c e m e n t a lg o r ith m for g r a v ita tio n a l w ave d ata an a lysis 153 7.1 Stochastic tem plate placement a lg o r ith m ................................................155 7.1.1 Expected size of complete stochastic tem plate banks . . . .1 5 6 7.1.2 The convergence of a stochastic tem plate b a n k .......................... 159 7.1.3 C om putational cost of filtering te m p la te s .................................... 161 7.2 Testing the a lg o rith m .....................................................................................163 7.2.1 Templates in flat spaces of different dimensions .......................163 7.2.2 Choice of coordinate system and convergence of tem plate n u m b e r s ................................................................................................ 164 7.2.3 Templates on a s p h e r e ...................................................................... 167 7.3 Templates for gravitational wave c h i r p s ................................................... 168 7.3.1 Choice of coordinate s y s t e m ............................................................ 169 7.3.2 Comparison of stochastic lattice w ith a square lattice . . . .1 7 0 7.3.3 Efficiency of the Stochastic bank ..................................................171 7.4 C o n c lu sio n s ..................................................................................................... 173

8 A hierarchical search for g r a v ita tio n a l w aves from su p e r m a ssiv e black hole bin ary m ergers 175 8.1 Search method .................................................................................................177 8.1.1 M atched filtering w ith th e F - s t a t i s t i c ........................................... 178 8.1.2 Stochastically generated tem plate b a n k ........................................180 8.1.3 Hierarchical search technique .........................................................182 8.2 R e s u lts ............................................................................................................... 183

[1] B. P. A bbott et al. Search for G ravitational Waves from Low Mass Binary Coalescences in the First Year of LIG O 's S5 Data. Phys. Rev., D79:122001, 2009.

[2] B. P. A bbott et al. Search for G ravitational Waves from Low Mass Compact B inary Coalescence in 186 Days of LIGO's fifth Science Run. Phys. Rev., D80:047101, 2009.

[3] J. Abadie et al. Search for G ravitational Waves from Compact Binary Coalescence in LIGO and Virgo D ata from S5 and VSR1. Phys. Rev., D82:102001, 2010.

[4] J. Abadie et al. Search for gravitational-wave inspiral signals associated with short Gam m a-Ray Bursts during LIGO's fifth and Virgo's first science run. Astrophys. J., 715:1453-1461, 2010.

[5] B. A bbott et al. Implications for the Origin of GRB 070201 from LIGO Observations. Astrophys. J., 681:1419-1428, 2008.

Ill A lbert Einstein. On the General Theory of Relativity. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ), 1915:778-786, 1915.

12] A lbert Einstein. T he Field Equations of G ravitation. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ), 1915:844-847, 1915.

13] Peter Coles. Einstein, E ddington and the 1919 Eclipse. 2001.

141 B. A bbott et al. Ligo: the laser interferom eter gravitational-wave observatory. Reports on Progress in Physics, 72(7):076901, 2009.

171 B. P. A b bo tt et al. An U pper Limit on the Stochastic Gravitational-W ave Background of Cosmological Origin. Nature, 460:990, 2009.

181 J. Abadie et al. All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Phys. Rev., D81:102001, 2010.

74 references, page 1 of 5
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue