DAESA - a Matlab tool for structural analysis of differential-algebraic equations: theory

Article English OPEN
Pryce, John D.; Nedialkov, Nedialko; Tan, Guangning;
(2015)
  • Publisher: Association for Computing Machinery
  • Identifiers: doi: 10.1145/2689664
  • Subject: QA
    arxiv: Computer Science::Databases
    acm: ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION

DAESA, Differential-Algebraic Equations Structural Analyzer, is a MATLAB tool for structural analysis of\ud differential-algebraic equations (DAEs). It allows convenient translation of a DAE system into MATLAB and\ud provides a small set of easy-to-use functions. DAESA ... View more
  • References (22)
    22 references, page 1 of 3

    BRENAN, K., CAMPBELL, S., AND PETZOLD, L. 1996. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations second Ed. SIAM, Philadelphia.

    CAMERON, I. AND GANI, R. 2011. Product and Process Modelling: A Case Study Approach. Elsevier Science, UK.

    CAMPBELL, S. L. AND GRIEPENTROG, E. 1995. Solvability of general differential algebraic equations. SIAM J. Sci. Comput. 16, 2, 257-270.

    CAO, Y. 2011. LAPJV, a MATLAB implementation of the Jonker-Volgenant algorithm for solving LAPs. http: //www.mathworks.com/matlabcentral/fileexchange/authors/22524.

    COLEMAN, T. F., EDENBRANDT, A., AND GILBERT, J. R. 1986. Predicting fill for sparse orthogonal factorization. J. ACM 33, 3, 517-532.

    DAVIS, T. A. AND HU, Y. 2011. The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38, 1, 1:1-1:25.

    DUFF, I. S., ERISMAN, A. M., AND REID, J. K. 1986. Direct Methods for Sparse Matrices. Oxford Science Publications. Clarendon Press, Oxford.

    DUFF, I. S. AND GEAR, C. W. 1986. Computing the structural index. SIAM Journal on Algebraic and Discrete Methods 7, 594603.

    DYNASYM AB. 2004. Dymola, dynamic modeling laboratory, user's manual. http://www.inf.ethz.ch/ personal/cellier/Lect/MMPS/Refs/Dymola5Manual.pdf.

    JONKER, R. AND VOLGENANT, A. 1987. A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38, 325-340. The assignment code is available at www.magiclogic. com/assignment.html.

  • Metrics
Share - Bookmark