publication . Article . Other literature type . 2006

Dissipation through spin Coulomb drag in electronic spin transport and optical excitations

D'Amico, I.; Ullrich, C. A.;
Open Access English
  • Published: 08 Sep 2006
  • Country: United Kingdom
Abstract
Spin Coulomb drag (SCD) constitutes an intrinsic source of dissipation for spin currents in metals and semiconductors. We discuss the power loss due to SCD in potential spintronics devices and analyze in detail the associated damping of collective spin-density excitations. It is found that SCD contributes substantially to the linewidth of intersubband spin plasmons in semiconductor quantum wells, which suggests the possibility of a purely optical quantitative measurement of the SCD effect in a parabolic well through inelastic light scattering.
Subjects
arXiv: Condensed Matter::Mesoscopic Systems and Quantum Hall EffectAstrophysics::Cosmology and Extragalactic AstrophysicsCondensed Matter::OtherCondensed Matter::Strongly Correlated Electrons
free text keywords: Electronic, Optical and Magnetic Materials, Condensed Matter Physics, Electronic spin, Spin wave, Physics, Dissipation, Coulomb, Spin-½, Drag
Funded by
NSF| CAREER: Time-Dependent Density-Functional Approach for Ultrafast Nonlinear Excitations in Semiconductors
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 0553485
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Materials Research
22 references, page 1 of 2

1Department of Physics, University of York, York YO10 5DD, United Kingdom

2Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, Missouri, 65211

(Dated: August 21, 2007)

∗ Electronic address: ida500@york.ac.uk [1] I. D'Amico and G. Vignale, Phys. Rev. B 62, 4853 (2000). [2] I. D'Amico and G. Vignale, Europhys. Lett. 55, 566 (2001). [3] I. D'Amico and G. Vignale, Phys. Rev. B 65, 085109 (2002). [4] K. Flensberg, T. S. Jensen, and N. A. Mortensen, Phys. Rev. B

64, 245308 (2001). [5] I. D'Amico and G. Vignale, Phys. Rev. B 68, 045307 (2003). [6] C. P. Weber, N. Gedik, J. E. Moore, J. Orenstein, J. Stephens,

and D. D. Awschalom, Nature 437, 1330 (2005). [7] J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313

(1998); Nature 397, 139 (1999). [8] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B.

J. van Wees, Phys. Rev. B 62, R4790 (2000). [9] This is particularly important when spin-dependent applications

tion (gating) times must in fact be at least 10−4 times smaller

I.O. Kulik and R. Ellialtioglu ( NATO ASI, Turkey, June 1999). [10] J. M. Kikkawa and D. D. Awschalom, Science 287, 473 (2000);

Science 292, 2458 (2001). [11] M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev.

Lett. 76, 1212 (1996). [12] G. Vignale and W. Kohn, Phys. Rev. Lett. 77, 2037 (1996). [13] R. D'Agosta and G. Vignale, Phys. Rev. Lett. 96, 016405

(2006). [14] G. Vignale, C. A. Ullrich, and S. Conti, Phys. Rev. Lett. 79,

4878 (1997). [15] Z. Qian, A. Costantinescu, and G. Vignale, Phys. Rev. Lett. 90,

66402 (2003). [16] C. A. Ullrich and K. Burke, J. Chem. Phys. 121, 28 (2004). [17] H. Appel, E. K. U. Gross, and K. Burke, Phys. Rev. Lett. 90,

22 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue