Share  Bookmark

 Download from


[1] G. Bao, Finite element approximation of time harmonic waves in periodic structures, SIAM J. Numer. Anal. 32 (1995), pp. 1155{1169.
[2] G. Bao, D. C. Dobson, and J. A. Cox, Mathematical studies in rigorous grating theory, J. Opt. Soc. Amer. A 12 (1995), pp. 1029{1042.
[3] A.S. BonnetBendhia and F. Starling, Guided waves by electromagnetic gratings and nonuniqueness examples for the di raction problem, Math. Methods Appl. Sci., 17 (1994), pp. 305{338.
[4] S. N. ChandlerWilde, Boundary value problems for the Helmholtz equation in a halfplane, in Proceedings, Third Int. Conf. on Mathematical and Numerical Aspects of Wave Propagation, G. Cohen, L. Halpern, and P. Joly, eds., Proceedings Appl. Math 50, SIAM, Philadelphia, PA, 1995, pp. 188{197.
[5] S. N. ChandlerWilde, The impedance boundary value problem for the Helmholtz equation in a halfplane, Math. Methods Appl. Sci., 20 (1997), pp. 813{840.
[6] S. N. ChandlerWilde and C. R. Ross, Scattering by rough surfaces: The Dirichlet problem for the Helmholtz equation in a nonlocally perturbed halfplane, Math. Methods Appl. Sci., 19 (1996), pp. 959{976.
[7] S. N. ChandlerWilde and B. Zhang, Electromagnetic scattering by an inhomogeneous conducting or dielectric layer on a perfectly conducting plate, Proc. Roy. Soc. London Ser. A, 454 (1998), pp. 519{542.
[8] S. N. ChandlerWilde and B. Zhang, A uniqueness result for scattering by in nite rough surfaces, SIAM J. Appl. Math., 58 (1998), pp. 1774{1790.
[9] S. N. ChandlerWilde and B. Zhang, On the solvability of a class of second kind integral equations on unbounded domains, J. Math. Anal. Appl., 214 (1997), pp. 482{502.
[10] S. N. ChandlerWilde and B. Zhang, A Generalized Collectively Compact Operator Theory with an Application to Integral Equations on Unbounded Domains, in preparation.