Scattering of electromagnetic waves by rough interfaces and inhomogeneous layers

Article English OPEN
Chandler-Wilde, Simon N.; Zhang, Bo;
(1999)

We consider a two-dimensional problem of scattering of a time-harmonic electromagnetic plane wave by an infinite inhomogeneous conducting or dielectric layer at the interface between semi-infinite homogeneous dielectric half-spaces. The magnetic permeability is assumed ... View more
  • References (31)
    31 references, page 1 of 4

    [1] G. Bao, Finite element approximation of time harmonic waves in periodic structures, SIAM J. Numer. Anal. 32 (1995), pp. 1155{1169.

    [2] G. Bao, D. C. Dobson, and J. A. Cox, Mathematical studies in rigorous grating theory, J. Opt. Soc. Amer. A 12 (1995), pp. 1029{1042.

    [3] A.-S. Bonnet-Bendhia and F. Starling, Guided waves by electromagnetic gratings and nonuniqueness examples for the di raction problem, Math. Methods Appl. Sci., 17 (1994), pp. 305{338.

    [4] S. N. Chandler-Wilde, Boundary value problems for the Helmholtz equation in a half-plane, in Proceedings, Third Int. Conf. on Mathematical and Numerical Aspects of Wave Propagation, G. Cohen, L. Halpern, and P. Joly, eds., Proceedings Appl. Math 50, SIAM, Philadelphia, PA, 1995, pp. 188{197.

    [5] S. N. Chandler-Wilde, The impedance boundary value problem for the Helmholtz equation in a half-plane, Math. Methods Appl. Sci., 20 (1997), pp. 813{840.

    [6] S. N. Chandler-Wilde and C. R. Ross, Scattering by rough surfaces: The Dirichlet problem for the Helmholtz equation in a non-locally perturbed half-plane, Math. Methods Appl. Sci., 19 (1996), pp. 959{976.

    [7] S. N. Chandler-Wilde and B. Zhang, Electromagnetic scattering by an inhomogeneous conducting or dielectric layer on a perfectly conducting plate, Proc. Roy. Soc. London Ser. A, 454 (1998), pp. 519{542.

    [8] S. N. Chandler-Wilde and B. Zhang, A uniqueness result for scattering by in nite rough surfaces, SIAM J. Appl. Math., 58 (1998), pp. 1774{1790.

    [9] S. N. Chandler-Wilde and B. Zhang, On the solvability of a class of second kind integral equations on unbounded domains, J. Math. Anal. Appl., 214 (1997), pp. 482{502.

    [10] S. N. Chandler-Wilde and B. Zhang, A Generalized Collectively Compact Operator Theory with an Application to Integral Equations on Unbounded Domains, in preparation.

  • Metrics
Share - Bookmark