[1] Alhussan, K., “Computational analysis of high speed flow over a conical surface with changing the angle of attack,” Procedia Engineering 61, 48-51, 2013.
[2] Willett, J.E., “Supersonic flow at the surface of a circular cone at angle of attack,” Journal of Aerospace Sciences 27 (12), 907-912, 1960.
[3] The Johns Hopkins University Applied Physics Laboratory, “Handbook of supersonic aerodynamics,” Navweps report vol. 3, section 8, 1488.
[4] Lin, T.C., Rubin, S.G., “Viscous flow over a cone at moderate incidence. Part 2. Supersonic boundary layer,” Journal of Fluid Mechanics 59, 593-620, 1973.
[5] Fletcher, C.A.J., Holt, M., “Supersonic viscus flow over cones at large angles of attack,” J. Fluid Mech. 74 (3), 561-591, 1976.
[6] Nebbeling, C., Bannink, W.J., “Experimental investigation of the supersonic flow past a slender cone at high incidence,” J. Fluid Mech. 87 (3), 475-496, 1978.
[7] Adams Jr.J.C., Three-dimensional compressible turbulent boundary layer on a sharp cone at 13
[36] Zare-Behtash, H., Kontis, K., Gongora-Orozco, N., Takayama, K., “Compressible vortex loops: effect of nozzle geometry,” International Journal of Heat and Fluid Flow 30, 561-576, 2009.
[37] Ukai, T., Zare-Behtash, H., Erdem, E., Lo, K.H., Kontis, K., 2014. Effectiveness of jet location [39] Collingbourne, J.R., Crabtree, L.F., Bartlett, W.J., “A semi-empirical prediction method for