Abelian Hall Fluids and Edge States: a Conformal Field Theory Approach

Article, Preprint English OPEN
De Martino, A. ; Musto, R. (1995)

We show that a Coulomb gas Vertex Operator representation of 2D Conformal Field Theory gives a complete description of abelian Hall fluids: as an euclidean theory in two space dimensions leads to the construction of the ground state wave function for planar and toroidal geometry and characterizes the spectrum of low energy excitations; as a $1+1$ Minkowski theory gives the corresponding dynamics of the edge states. The difference between a generic Hall fluid and states of the Jain's sequences is emphasized and the presence, in the latter case, of of an $\hat {U}(1)\otimes \hat {SU}(n)$ extended algebra and the consequent propagation on the edges of a single charged mode and $n-1$ neutral modes is discussed.
  • References (13)
    13 references, page 1 of 2

    1. D.C. Tsui, H. L. Stormer and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).

    4. For a review see e.g. G. Cristofano, G. Maiella, R. Musto and F. Nicodemi, Nucl. Phys. 33C, 119 (1993).

    6. A. De Martino and R. Musto, Knizhnik-Zamolodchikov equation and extended symmetry for stable Hall states , preprint DPS-NA-19 /95, cond-mat 1995.

    8. G. Cristofano, G. Maiella, R. Musto and F. Nicodemi, Mod. Phys. Lett. 6A 2885 (1991).

    9. See e.g. J. Fr¨olich and A. Zee, Nucl. Phys. B364, 517 (1991); X. G. Wen and A. Zee, Phys. Rev. B 46, 2290 (1993).

    10. X. G. Wen, Int. J. Mod. Phys. B6, 1711 (1992), and references contained therein.

    15. D. Mumford, Tata Lectures on Theta, Birkh¨auser Boston (1983).

    16. E. Keski-Vakkuri and X. G. Wen, Int. J. Mod. Phys. B7, 4227 (1993).

    17. R. R. Du, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer and K. W. West, Phys. Rev. Lett. 70, 2944 (1993).

    18. See e.g. B. I. Halperin, P. A . Lee and N. Read, Phys. Rev. B 47, 7312 (1993); S. H. Simon and B. I. Halperin, Phys. Rev. B 48 17368 (1993), B 50 1807 (1994);

  • Metrics
    No metrics available
Share - Bookmark