Modeling the observed tropospheric BrO background:Importance of multiphase chemistry and implications for ozone, OH, and mercury

Article OPEN
Schmidt, J. A. ; Jacob, D. J. ; Horowitz, H. M. ; Hu, L. ; Sherwen, T. ; Evans, M. J. ; Liang, Q. ; Suleiman, R. M. ; Oram, D. E. ; Le Breton, M. ; Percival, C. J. ; Wang, S. ; Dix, B. ; Volkamer, R. (2016)

Aircraft and satellite observations indicate the presence of ppt (ppt ≡ pmol/mol) levels of BrO in the free troposphere with important implications for the tropospheric budgets of ozone, OH, and mercury. We can reproduce these observations with the GEOS-Chem global tropospheric chemistry model by including a broader consideration of multiphase halogen (Br–Cl) chemistry than has been done in the past. Important reactions for regenerating BrO from its non-radical reservoirs include HOBr+Br−/Cl− in both aerosols and clouds, and oxidation of Br− by ClNO3 and ozone. Most tropospheric BrO in the model is in the free troposphere, consistent with observations, and originates mainly from the photolysis and oxidation of ocean-emitted CHBr3. Stratospheric input is also important in the upper troposphere. Including production of gas phase inorganic bromine from debromination of acidified sea salt aerosol increases free tropospheric Bry by about 30 %. We find HOBr to be the dominant gas-phase reservoir of inorganic bromine. Halogen (Br-Cl) radical chemistry as implemented here in GEOS-Chem drives 14 % and 11 % decreases in the global burdens of tropospheric ozone and OH, respectively, a 16 % increase in the atmospheric lifetime of methane, and an atmospheric lifetime of 6 months for elemental mercury. The dominant mechanism for the Br-Cl driven tropospheric ozone decrease is oxidation of NOx by formation and hydrolysis of BrNO3 and ClNO3.
  • References (32)
    32 references, page 1 of 4

    Alexander, B., R. J. Park, D. J. Jacob, Q. B. Li, R. M. Yantosca, J. Savarino, C. C. W. Lee, and M. H. Thiemens (2005), Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes, J. Geophys. Res., 110, D10307, doi:10.1029/2004JD005659.

    Alexander, B., D. J. Allman, H. M. Amos, T. D. Fairlie, J. Dachs, D. A. Hegg, and R. S. Sletten (2012), Isotopic constraints on sulfate aerosol formation pathways in the marine boundary layer of the subtropical northeast Atlantic Ocean, J. Geophys. Res., 117, D06304, doi:10.1029/2011JD016773.

    Ammann, M., R. A. Cox, J. N. Crowley, M. E. Jenkin, A. Mellouki, M. J. Rossi, J. Troe, and T. J. Wallington (2013), Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI-Heterogeneous reactions with liquid substrates, Atmos. Chem. Phys., 13, 8045-8228, doi:10.5194/acp-13-8045-2013.

    Amos, H. M., et al. (2012), Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition, Atmos. Chem. Phys., 12(1), 591-603, doi:10.5194/acp-12-591-2012.

    Barrie, L. A., J. W. Bottenheim, R. C. Schnell, P. J. Crutzen, and R. A. Rasmussen (1988), Ozone destruction and photochemical-reactions at polar sunrise in the lower Arctic atmosphere, Nature, 334, 138-141, doi:10.1038/334138a0.

    Beckwith, R. C., T. X. Wang, and D. W. Margerum (1996), Equilibrium and kinetics of bromine hydrolysis, Inorg. Chem., 35(4), 995-1000, doi:10.1021/ic950909w.

    Bogdan, A., M. J. Molina, K. Sassen, and M. Kulmala (2006), Formation of low-temperature cirrus from H2SO4/H2O aerosol droplets, J. Phys. Chem. A, 110(46), 12,541-12,542, doi:10.1021/jp065898e.

    Bogdan, A., M. J. Molina, H. Tenhu, E. Mayer, and T. Loerting (2010), Formation of mixed-phase particles during the freezing of polar stratospheric ice clouds, Nat. Chem., 2, 197-201, doi:10.1038/nchem.540.

    Breider, T. J., M. P. Chipperfield, N. A. D. Richards, K. S. Carslaw, G. W. Mann, and D. V. Spracklen (2010), Impact of BrO on dimethylsulfide in the remote marine boundary layer, Geophys. Res. Lett., 37, L02807, doi:10.1029/2009GL040868.

    Read, K. A., et al. (2008), Extensive halogen-mediated ozone destruction over the tropical Atlantic Ocean, Nature, 453, 1232-1235, doi:10.1038/nature07035.

  • Metrics
    No metrics available
Share - Bookmark