Correction to scaling analysis of diffusion-limited aggregation

Preprint, Article English OPEN
Somfai, Ellak ; Ball, Robin C. ; Bowler, Neill E. ; Sander, Leonard M. (2002)

Diffusion-limited aggregation is consistent with simple scaling. However, strong subdominant terms are present, and these can account for various earlier claims of anomalous scaling. We show this in detail for the case of multiscaling.
  • References (9)

    [1] T. A. Witten, L. M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett. 47 (1981) 1400-1403.

    [2] M. Plischke, Z. Ra´cz, Active zone of growing clusters: Diffusion-limited aggregation and the Eden model, Phys. Rev. Lett. 53 (1984) 415-418.

    [3] B. Davidovitch, H. G. E. Hentschel, Z. Olami, I. Procaccia, L. M. Sander, E. Somfai, Diffusion limited aggregation and iterated conformal maps, Phys. Rev. E 59 (1999) 1368-1378.

    [6] P. Meakin, L. M. Sander, Comment on ”Active zone of growing clusters: Diffusion-limited aggregation and the Eden model”, Phys. Rev. Lett. 54 (1985) 2053-2053.

    [7] R. C. Ball, N. E. Bowler, L. M. Sander, E. Somfai, Off-lattice noise reduction and the ultimate scaling of diffusion-limited aggregation in two dimensions, Phys. Rev. E 66 (2002) 026109.

    [8] E. Somfai, L. M. Sander, R. C. Ball, Scaling and crossovers in diffusion limited aggregation, Phys. Rev. Lett. 83 (1999) 5523-5526.

    [9] M. B. Hastings, L. S. Levitov, Laplacian growth as one-dimensional turbulence, Physica D 116 (1998) 244-252.

    [10] A. Coniglio, M. Zannetti, Novel dynamical scaling in kinetic growth phenomena, Physica A 163 (1990) 325-333.

    [11] J. Lee, S. Schwarzer, A. Coniglio, H. E. Stanley, Localization of growth sites in diffusion-limited-aggregation clusters: Multifractality and multiscaling, Phys. Rev. E 48 (1993) 1305-1315.

  • Metrics
    No metrics available
Share - Bookmark