Durability of CaO-CaZrO sorbents for high-temperature CO capture prepared by a wet chemical method

Article English OPEN
Zhao, M ; Bilton, M ; Brown, AP ; Cunliffe, AM ; Dvininov, E ; Dupont, V ; Comyn, TP ; Milne, SJ (2014)
  • Publisher: American Chemical Society

Powders of CaO sorbent modified with CaZrO have been synthesized by a wet chemical route. For carbonation and calcination conditions relevant to sorbent-enhanced steam reforming applications, a powder of composition 10 wt % CaZrO/90 wt % CaO showed an initial rise in CO uptake capacity in the first 10 carbonation-decarbonation cycles, increasing from 0.31 g of CO/g of sorbent in cycle 1 to 0.37 g of CO/g of sorbent in cycle 10 and stabilizing at this value for the remainder of the 30 cycles tested, with carbonation at 650 C in 15% CO and calcination at 800 C in air. Under more severe conditions of calcination at 950 C in 100% CO, following carbonation at 650 C in 100% CO, the best overall performance was for a sorbent with 30 wt % CaZrO/70 wt % CaO (the highest Zr ratio studied), with an initial uptake of 0.36 g of CO/g of sorbent, decreasing to 0.31 g of CO /g of sorbent at the 30th cycle. Electron microscopy revealed that CaZrO was present in the form of ≤0.5 μm cuboid and 20-80 nm particles dispersed within a porous matrix of CaO/CaCO; the nanoparticles are considered to be the principal reason for promoting multicycle durability.
  • References (8)

    Anthony, E. J.; Bulewicz, E. M.; Jia, L. Prog. Energy Combust. Sci. 2007, 33, (2), 171- 3. Dou, B.; Dupont, V.; Rickett, G.; Blakeman, N.; Williams, P. T.; Chen, H.; Ding, Y.;

    Ghadiri, M. Bioresour. Technol. 2009, 100, (14), 3540-3547.

    Ramkumar, S.; Phalak, N.; Fan, L.-S. Ind. Eng. Chem. Res. 2011, 51, (3), 1186-1192. 8. Manovic, V.; Charland, J. P.; Blamey, J.; Fennell, P. S.; Lu, D. Y.; Anthony, E. J. Fuel

    Li, Z.-s.; Cai, N.-s.; Huang, Y.-y.; Han, H.-j. Energy Fuels 2005, 19, (4), 1447-1452.

    11. Koirala, R.; Reddy, G. K.; Smirniotis, P. G. Energy Fuels 2012, 26, (5), 3103-3109. 20. Broda, M.; Müller, C. R. Fuel 2013, http://dx.doi.org/10.1016/j.fuel.2013.08.004. 21. Vasconcelos, C. New Challenges in the Sintering of HA/ZrO2 Composites. In Sintering

    of Ceramics - New Emerging Techniques, Lakshmanan, A., Ed. InTech: 2012. 22. Molinder, R.; Comyn, T. P.; Hondow, N.; Parker, J. E.; Dupont, V. Energy Environ. Sci.

    2012, 5, (10), 8958-8969. 23. Donat, F.; Florin, N. H.; Anthony, E. J.; Fennell, P. S. Environ. Sci. Technol. 2011, 46,

    26. Wang, Z.; Comyn, T. P.; Ghadiri, M.; Kale, G. M. J. Mater. Chem. 2011, 21, 16494 1649. 28. Manovic, V.; Anthony, E. J. Int. J. Environ. Res. Public Health 2010, 7, (8), 3129-3140. 29. Florin, N. H.; Harris, A. T. Energy Fuels 2008, 22, (4), 2734-2742.

  • Metrics
    views in OpenAIRE
    views in local repository
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    White Rose Research Online - IRUS-UK 0 22
Share - Bookmark