Extreme-Ultraviolet Observational consequences of the spatial localisation nanoflare heating within a multi-stranded atmospheric loop

Article, Preprint English OPEN
Sarkar, Aveek ; Walsh, Robert William (2009)
  • Publisher: University of Chicago Press
  • Related identifiers: doi: 10.1088/0004-637X/699/2/1480
  • Subject: Astrophysics - Solar and Stellar Astrophysics | F500 | Astrophysics - Instrumentation and Methods for Astrophysics

Determining the preferred spatial location of the energy input to solar coronal loops would be an important step forward towards a more complete understanding of the coronal heating problem. Following on from Sarkar & Walsh (2008) this paper presents a short 10e9 cm "global loop" as 125 individual strands, where each strand is modelled independently by a one-dimensional hydrodynamic simulation. The strands undergo small-scale episodic heating and are coupled together through the frequency distribution of the total energy input to the loop which follows a power law distribution with index ~ 2.29. The spatial preference of the swarm of heating events from apex to footpoint is investigated. From a theoretical perspective, the resulting emission measure weighted temperature profiles along these two extreme cases does demonstrate a possible observable difference. Subsequently, the simulated output is folded through the TRACE instrument response functions and a re-derivation of the temperature using different filter-ratio techniques is performed. Given the multi-thermal scenario created by this many strand loop model, a broad differential emission measure results; the subsequent double and triple filter ratios are very similar to those obtained from observations. However, any potential observational signature to differentiate between apex and footpoint dominant heating is possibly below instrumental thresholds. The consequences of using a broadband instrument like TRACE and Hinode-XRT in this way are discussed.
  • References (5)

    Adamakis, S., Morton-Jones, A. J., & Walsh, R. W. 2008, ArXiv e-prints Arber, T. D., Longbottom, A. W., Gerrard, C. L., & Milne, A. M. 2001, Journal of Computational Physics, 171, 151

    Aschwanden, M. J., & Nightingale, R. W. 2005, ApJ, 633, 499 Aschwanden, M. J., Nightingale, R. W., & Alexander, D. 2000, ApJ, 541, 1059 Aschwanden, M. J., Schrijver, C. J., & Alexander, D. 2001, ApJ, 550, 1036 Cargill, P. J. 1994, ApJ, 422, 381 Cargill, P. J., & Klimchuk, J. A. 1997, ApJ, 478, 799 Chae, J., Park, Y.-D., Moon, Y.-J., Wang, H., & Yun, H. S. 2002, ApJ, 567, L159 Muller, R., Roudier, T., Vigneau, J., & Auffret, H. 1994, A&A, 283, 232 Noglik, J. B., & Walsh, R. W. 2007, ApJ, 655, 1127 Noglik, J. B., Walsh, R. W., & Cirtain, J. 2008, ApJ, 674, 1191 Parenti, S., Buchlin, E., Cargill, P. J., Galtier, S., & Vial, J.-C. 2006, ApJ, 651, 1219 Priest, E. R., Foley, C. R., Heyvaerts, J., Arber, T. D., Culhane, J. L., & Acton, L. W. 1998, Nature, 393, 545

    Priest, E. R., Foley, C. R., Heyvaerts, J., Arber, T. D., Mackay, D., Culhane, J. L., & Acton, L. W. 2000, ApJ, 539, 1002

    Schmelz, J. T., Kashyap, V. L., & Weber, M. A. 2007, ApJ, 660, L157 Schmelz, J. T., Roames, J. K., & Nasraoui, K. 2007, Advances in Space Research, 39, 1497 Ugarte-Urra, I., Warren, H. P., & Brooks, D. H. 2009, ArXiv e-prints Walsh, R. 1999, in ESA Special Publication, Vol. 446, 8th SOHO Workshop: Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona, ed. J.-C. Vial & B. Kaldeich-Schu¨, 687

    Warren, H. P. 2006, ApJ, 637, 522 Warren, H. P., Winebarger, A. R., & Hamilton, P. S. 2002, ApJ, 579, L41 Weber, M. A., Schmelz, J. T., DeLuca, E. E., & Roames, J. K. 2005, ApJ, 635, L101 Winebarger, A. R., & Warren, H. P. 2004, ApJ, 610, L129 Winebarger, A. R., Warren, H. P., & Seaton, D. B. 2003, ApJ, 593, 1164

  • Metrics
    No metrics available
Share - Bookmark