A mechanistic proposal for the protodeboronation of neat boronic acids: boronic acid mediated reaction in the solid state.

Article English OPEN
Noonan, G; Leach, AG;
  • Publisher: Royal society of Chemistry
  • Identifiers: doi: 10.1039/c4ob02543a
  • Subject: QD
    mesheuropmc: food and beverages | inorganic chemicals | fungi

A combined experimental and computational study suggests that a reduction in the entropy of activation in the solid state can lead to the protodeboronation of boronic acids.
  • References (17)
    17 references, page 1 of 2

    Electronic Supplementary Information (ESI) available: All experimental and analytical information for compounds described, stability studies, computed geometries and energies, computational benchmarking, solid state parameters. See DOI: 1. Fersht, A. in Structure and Mechanism in Protein Science (W. H.

    Freeman and Co., New York, 1999). 2. Page, M. I. & Jencks, W. P. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc. Natl. Acad. Sci. U. S. A. 68, 1678-1683 (1971). 3. Kim, S. P., Leach, A. G. & Houk, K. N. The Origins of Noncovalent Catalysis of Intermolecular Diels-Alder Reactions by Cyclodextrins, Self-Assembling Capsules, Antibodies, and RNAses.

    J. Org. Chem. 67, 4250-4260 (2002). 4. Villa, J. et al. How important are entropic contributions to enzyme catalysis? Proc. Natl. Acad. Sci. U. S. A. 97, 11899-11904 (2000). 5. Meijere, A. d. & Diederich, F. in Metal-catalyzed cross-coupling reactions (eds de Meijere, A. & Diederich, F.) (Wiley-VCH, Weinheim ; Chichester, 2004). 6. Johansson Seechurn, C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int.

    Ed Engl. 51, 5062-5085 (2012). 7. Hall, D. G. in Boronic acids : volume 1 : preparation and applications in organic synthesis, medicine and materials (WileyVCH, Weinheim, 2011). 8. Kotha, S., Lahiri, K. & Kashinath, D. Recent applications of the Suzuki-Miyaura cross-coupling reaction in organic synthesis.

    Tetrahedron 58, 9633-9695 (2002). 9. Knapp, D. M., Gillis, E. P. & Burke, M. D. A General Solution for Unstable Boronic Acids: Slow-Release Cross-Coupling from AirStable MIDA Boronates. J. Am. Chem. Soc. 131, 6961-6963 (2009). 10. Darses, S. & Genet, J. P. Potassium organotrifluoroborates: new perspectives in organic synthesis. Chem. Rev. 108, 288-325 (2008). 11. Vedejs, E., Chapman, R., Fields, S., Lin, S. & Schrimpf, M.

    Chem. 60, 3020-3027 (1995). 12. Molander, G. A. & Canturk, B. Organotrifluoroborates and monocoordinated palladium complexes as catalysts-a perfect combination for Suzuki-Miyaura coupling. Angewandte Chemie International Edition 48, 9240-9261 (2009). 13. Butters, M. et al. Aryl trifluoroborates in Suzuki-Miyaura coupling: the roles of endogenous aryl boronic acid and fluoride.

    Angewandte Chemie International Edition 49, 5156-5160 (2010). 14. Lennox, A. J. J. & Lloyd-Jones, G. C. The slow-release strategy in Suzuki-Miyaura coupling. Isr. J. Chem. 50, 664-674 (2010). 15. Lennox, A. J. & Lloyd-Jones, G. C. Organotrifluoroborate Hydrolysis: Boronic Acid Release Mechanism and an Acid-Base Paradox in Cross-Coupling. J. Am. Chem. Soc. 134, 7431-7441 (2012). 16. Kuivila, H. G. & Nahabedian, K. V. Electrophilic Displacement Reactions. XI. Solvent Isotope Effects in the Protodeboronation of Areneboronic Acids1-3. J. Am. Chem. Soc. 83, 2164-2166 (1961). 17. Kuivila, H. G. & Nahabedian, K. V. Electrophilic Displacement Reactions. X. General Acid Catalysis in the Protodeboronation of Areneboronic Acids1-3. J. Am. Chem. Soc. 83, 2159-2163 (1961). 18. Kuivila, H. G., Reuwer Jr., J. F. & Mangravite, J. A.

    Canadian Journal of Chemistry 41, 3081-3090 (1963). 34. Allen, F. H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. B 58, 380-388 (2002). 35. Rettig, S. J. & Trotter, J. Crystal and molecular structure of phenylboronic acid, C6H5B(OH)2. Can. J. Chem. 55, 3071-3075 (1977). 36. Zheng, C., Spielvogel, B., Smith, R. & Hosmane, N. Crystal structure of 4-methylphenylboronic acid, C7H9BO2. Zeitschrift für Kristallographie-New Crystal Structures 216, 363-364 (2001). 37. Saygili, N., Batsanov, A. S. & Bryce, M. R. 5-Pyrimidylboronic acid and 2-methoxy-5-pyrimidylboronic acid: new heteroarylpyrimidine derivatives via Suzuki cross-coupling reactions. Organic & biomolecular chemistry 2, 852-857 (2004). 38. Rodríguez‐ Cuamatzi, P., Vargas‐ Díaz, G. & Höpfl, H.

    Modification of 2D water that contains hexameric units in chair and boat conformations-a contribution to the structural elucidation of bulk water. Angewandte Chemie 116, 3103-3106 (2004). 39. Clapham, K. M. et al. New Pyrimidylboronic Acids and Functionalized Heteroarylpyrimidines by Suzuki Cross‐ Coupling Reactions. European Journal of Organic Chemistry 2007, 5712- 5716 (2007). 40. Smith, A. E., Clapham, K. M., Batsanov, A. S., Bryce, M. R. & Tarbit, B. (Dimethoxy‐ and Dihalopyridyl) boronic Acids and Highly Functionalized Heteroarylpyridines by Suzuki CrossCoupling Reactions. European Journal of Organic Chemistry 2008, 1458-1463 (2008). 41. Clapham, K. M., Batsanov, A. S., Bryce, M. R. & Tarbit, B.

    Organic & biomolecular chemistry 7, 2155-2161 (2009). 42. Dabrowski, M., Lulinski, S., Serwatowski, J. & Szczerbinska, M.

  • Related Research Results (1)
  • Related Organizations (5)
  • Metrics
Share - Bookmark