Representation errors and retrievals in linear and nonlinear data assimilation

Article English OPEN
Van Leeuwen, Peter Jan;
(2015)

This article shows how one can formulate the representation problem starting from Bayes’ theorem. The purpose of this article is to raise awareness of the formal solutions,so that approximations can be placed in a proper context. The representation errors appear in the ... View more
  • References (27)
    27 references, page 1 of 3

    Ades M, van Leeuwen PJ. 2013. An exploration of the equivalent-weights particle filter. Q. J. R. Meteorol. Soc. 139: 820 - 840, doi: 10.1002/ qj.1995.

    Ades M, van Leeuwen PJ. 2014. The equivalent-weights particle filter in a high-dimensional system. Q. J. R. Meteorol. Soc., doi: 10.1002/ qj.2370.

    Anderson JL, Wyman B, Zhang S, Hoar T. 2005. Assimilation of surface pressure observations using an ensemble filter in an idealized global atmospheric prediction system. J. Atmos. Sci. 62: 2921 - 2938.

    Bishop CM. 2006. Pattern Regocnition and Machine Learning. Springer: New York, NY.

    Bishop CH, Etherton B, Majumdar SJ. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Weather Rev. 129: 420 - 436.

    Bocquet M, Wu L, Chevallier F. 2011. Bayesian control space for optimal assimilation of observations, I: Consistent multiscale formalism. Q. J. R. Meteorol. Soc. 137: 1340 - 1356.

    Cohn SE. 1997. An introduction to estimation theory. J. Meteorol. Soc. Jpn. 75: 257 - 288.

    Daley R. 1993. Estimating observation error statistics for atmospheric data assimilation. Ann. Geophys. 11: 634 - 647.

    Derber J, Rosati A. 1989. A global oceanic data assimilation system. J. Phys. Oceanogr. 19: 1333 - 1347.

    Janjic T, Cohn SE. 2006. Treatment of observation error due to unresolved scales in atmospheric data assimilation. Mon. Weather Rev. 134: 2900 - 2915.

  • Metrics
Share - Bookmark