Share  Bookmark

 Download from


[1] L. Ambrosio, N. Fusco & D. Pallara. Functions of bounded variation and free discontinuity problems, in the Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000).
[2] F.J. Almgren & E.H. Lieb. Symmetric rearrangement is sometimes continuous. J. Amer. Math. Soc. 2, 683 773 (1989).
[3] A.Barvinok. A course in convexity, in the Graduate Studies in Mathematics, vol. 54. American Mathematical Society, Providence, 2002.
[4] F. Brock & A. Y. Solynin. An approach to symmetrization via polarization. Trans. Amer. Math. Soc. 352, 17591796 (2000).
[5] M. Chleb´ık, A. Cianchi & N. Fusco. The perimeter inequality under Steiner symmetrization: cases of equality. Ann. of Math. 162, 525555 (2005).
[6] S.K. Chua & R. L. Wheeden. Weighted Poincar´e inequalities on convex domains. Math. Res. Lett. 17, 9931011 (2010).
[7] A. Cianchi & N. Fusco. Functions of bounded variation and rearrangements. Arch. for Rat. Mech. and Anal. 165, 140 (2002).
[8] M. Cicalese & G. Leonardi. A Selection Principle for the Sharp Quantitative Isoperimetric Inequality. Preprint (2010).
[9] I. Drelichman & R.G. Dur´an. Improved Poincar´e inequalities with weights. J. Math. Anal. Appl. 347, 286293 (2008).
[10] L. Esposito, N. Fusco & C. Trombetti. A quantitative version of the isoperimetric inequality: the anisotropic case. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4, 619651 (2005).
The information is available from the following content providers:
From  Number Of Views  Number Of Downloads 

Sussex Research Online  IRUSUK  0  100 