Discontinuous Galerkin Computation of the Maxwell Eigenvalues on Simplicial Meshes

Article English OPEN
Buffa, Annalisa ; Houston, Paul ; Perugia, Ilaria (2005)
  • Publisher: Elsevier BV
  • Journal: Journal of Computational and Applied Mathematics (issn: 0377-0427, vol: 204, pp: 317-333)
  • Related identifiers: doi: 10.1016/j.cam.2006.01.042
  • Subject: Applied Mathematics | Computational Mathematics
    arxiv: Mathematics::Numerical Analysis | Computer Science::Numerical Analysis

This paper is concerned with the discontinuous Galerkin approximation of the Maxwell eigenproblem. After reviewing the theory developed in [5], we present a set of numerical experiments which both validate the theory, and provide further insight regarding the practical performance of discontinuous Galerkin methods, particularly in the case when non-conforming meshes, characterized by the presence of hanging nodes, are employed.
  • References (20)
    20 references, page 1 of 2

    [1] P.F. Antonietti, A. Bu a, and I. Perugia. Discontinuous Galerkin approximation of the Laplace eigenproblem. Comput. Methods Appl. Mech. Engrg. to appear.

    [2] D.N. Arnold. An interior penalty nite element method with discontinuous elements. SIAM J. Numer. Anal., 19:742{760, 1982.

    [3] D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini. Uni ed analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39:1749{1779, 2001.

    [4] D. Bo . Fortin operator and discrete compactness for edge elements. Numer. Math., 87:229{246, 2000.

    [5] A. Bu a and I. Perugia. Discontinuous Galerkin approximation of the Maxwell eigenproblem. Technical Report 24-PV, IMATI-CNR, Pavia, Italy, 2005. http://www.imati.cnr.it/ annalisa/PS/maxwell.pdf.

    [6] S. Caorsi, P. Fernandes, and M. Ra etto. On the convergence of Galerkin nite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal., 38:580{607, 2000.

    [7] M. Costabel, M. Dauge, and S. Nicaise. Singularities of Maxwell interface problems. Model. Math. Anal. Numer., 33:627{649, 1999.

    [9] C. Dawson, S. Sun, and M.F. Wheeler. Compatible algorithms for coupled ow and transport. Comput. Methods Appl. Mech. Engrg., 193:2565{2580, 2004.

    [10] J. Descloux, N. Nassif, and J. Rappaz. On spectral approximation Part 1. The problem of convergence. RAIRO Model. Math. Anal. Numer., 12:97{112, 1978.

    [11] J. Descloux, N. Nassif, and J. Rappaz. On spectral approximation Part 2. Error estimates for the Galerkin method convergence. RAIRO Model. Math. Anal. Numer., 12:113{119, 1978.

  • Metrics
    No metrics available
Share - Bookmark