Cross- and in-plane thermal conductivity of AlN thin films measured using differential 3-omega method

Article English OPEN
Bogner, Manuel ; Benstetter, Günther ; Fu, Yong Qing (2017)
  • Publisher: Elsevier BV
  • Journal: Surface and Coatings Technology (issn: 0257-8972)
  • Related identifiers: doi: 10.1016/j.surfcoat.2017.01.100
  • Subject: Chemistry(all) | Condensed Matter Physics | Surfaces, Coatings and Films | Surfaces and Interfaces | Materials Chemistry | H600

Thickness dependency and interfacial structure effects on thermal properties of AlN thin films were systematically investigated by characterizing cross-plane and in-plane thermal conductivities, crystal structures, chemical compositions, surface morphologies and interfacial structures using an extended differential 3ω method, X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy, atomic force microscopy (AFM) and transmission electron microscopy. AlN thin films with various thicknesses from 100 to 1000 nm were deposited on p-type doped silicon substrates using a radio frequency reactive magnetron sputtering process. Results revealed that both the cross- and in-plane thermal conductivities of the AlN thin films were significantly smaller than those of the AlN in a bulk form. The thermal conductivities of the AlN thin films were strongly dependent on the film thickness, in both the cross- and in-plane directions. Both the XRD and AFM results indicated that the grain size significantly affected the thermal conductivity of the films due to the scattering effects from the grain boundary.
  • References (20)
    20 references, page 1 of 2

    [1] J. Zhou, H.F. Pang, L. Garcia-Gancedo, E. Iborra, M. Clement, M. de Miguel-Ramos, H. Jin, J.K. Luo, S. Smith, S.R. Dong, D.M. Wang, Y.Q. Fu, Discrete microfluidics based on aluminum nitride surface acoustic wave devices, Microfluid. Nanofluid. 18 (4) (2015) 537-548.

    [2] M. Clement, L. Vergara, J. Sangrador, E. Iborra, A. Sanz-Hervas, SAW characteristics of AlN films sputtered on silicon substrates, Ultrasonics 42 (1-9) (2004) 403-407.

    [3] H. Witte, A. Rohrbeck, K.-M. Günther, P. Saengkaew, J. Bläsing, A. Dadgar, A. Krost, Electrical investigations of AlGaN/AlN structures for LEDs on Si(111), Phys. Status Solidi A 208 (7) (2011) 1597-1599.

    [4] A. Jacquot, B. Lenoir, A. Dauscher, P. Verardi, F. Craciun, M. Stölzer, M. Gartner, M. Dinescu, Optical and thermal characterization of AlN thin films deposited by pulsed laser deposition, Appl. Surf. Sci. 186 (1-4) (2002) 507-512.

    [5] Y. Zhao, C. Zhu, S. Wang, J.Z. Tian, D.J. Yang, C.K. Chen, H. Cheng, P. Hing, Pulsed photothermal reflectance measurement of the thermal conductivity of sputtered aluminum nitride thin films, J. Appl. Phys. 96 (8) (2004) 4563.

    [6] G.A. Slack, R.A. Tanzilli, R.O. Pohl, J.W. Vandersande, The intrinsic thermal conductivity of AIN, J. Phys. Chem. Solids 48 (7) (1987) 641-647.

    [7] P.K. Kuo, G.W. Auner, Z.L. Wu, Microstructure and thermal conductivity of epitaxial AlN thin films, Thin Solid Films 253 (1-2) (1994) 223-227.

    [8] T.S. Pan, Y. Zhang, J. Huang, B. Zeng, D.H. Hong, S.L. Wang, H.Z. Zeng, M. Gao, W. Huang, Y. Lin, Enhanced thermal conductivity of polycrystalline aluminum nitride thin films by optimizing the interface structure, J. Appl. Phys. 112 (4) (2012) 44905.

    [9] S.-M. Lee, D.G. Cahill, Heat transport in thin dielectric films, J. Appl. Phys. 81 (6) (1997) 2590.

    [10] D.G. Cahill, K. Goodson, A. Majumdar, Thermometry and thermal transport in micro/ nanoscale solid-state devices and structures, J. Heat Transf. 124 (2) (2002) 223.

  • Metrics
    No metrics available
Share - Bookmark